
Reconfiguration of Time-Respecting Arborescences∗

Takehiro Ito† Yuni Iwamasa‡ Naoyuki Kamiyama§ Yasuaki Kobayashi¶

Yusuke Kobayashi‖ Shun-ichi Maezawa∗∗ Akira Suzuki†

June 29, 2023

Abstract

An arborescence, which is a directed analogue of a spanning tree in an undirected graph,
is one of the most fundamental combinatorial objects in a digraph. In this paper, we study
arborescences in digraphs from the viewpoint of combinatorial reconfiguration, which is the
field where we study reachability between two configurations of some combinatorial objects via
some specified operations. Especially, we consider reconfiguration problems for time-respecting
arborescences, which were introduced by Kempe, Kleinberg, and Kumar. We first prove that if
the roots of the initial and target time-respecting arborescences are the same, then the target
arborescence is always reachable from the initial one and we can find a shortest reconfiguration
sequence in polynomial time. Furthermore, we show if the roots are not the same, then the
target arborescence may not be reachable from the initial one. On the other hand, we show that
we can determine whether the target arborescence is reachable form the initial one in polynomial
time. Finally, we prove that it is NP-hard to find a shortest reconfiguration sequence in the
case where the roots are not the same. Our results show an interesting contrast to the previous
results for (ordinary) arborescences reconfiguration problems.

1 Introduction

An arborescence, which is a directed analogue of a spanning tree in an undirected graph, is one of
the most fundamental combinatorial objects in a digraph. For example, the problem of finding a
minimum-cost arborescence in a digraph with a specified root vertex has been extensively studied
(see, e.g., [4, 8, 10]). Furthermore, the theorem on arc-disjoint arborescences proved by Edmonds [6]
is one of the most important results in graph theory.

Motivated by a variety of settings, such as communication in distributed networks, epidemiology
and scheduled transportation networks, Kempe, Kleinberg and Kumar [15] introduced the concept
of temporal networks, which can be used to analyze relationships involving time over networks.

∗This work was partially supported by JSPS KAKENHI Grant Numbers JP18H04091, JP19K11814, JP20H05793,
JP20H05794, JP20H05795, JP20K11666, JP20K11692, JP20K19742, JP20K23323, JP22K17854, JP22K13956.

†Graduate School of Information Sciences, Tohoku University, Sendai, Japan. {takehiro, akira}@tohoku.ac.jp
‡Graduate School of Informatics, Kyoto University, Kyoto, Japan. iwamasa@i.kyoto-u.ac.jp
§Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan. kamiyama@imi.kyushu-u.ac.jp
¶Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan.

koba@ist.hokudai.ac.jp
‖Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan. yusuke@kurims.kyoto-u.ac.jp

∗∗Department of Mathematics, Tokyo University of Science, Tokyo, Japan. maezawa.mw@gmail.com

1

ar
X

iv
:2

30
5.

07
26

2v
2

 [
cs

.D
S]

 2
8

Ju
n

20
23

1

2

22

1

1

2

22

1

1

2

22

1

1

2

22

1

Figure 1: Examples of time-respecting arborescences.

More formally, a temporal network consists of a digraph D = (V,A) and a time label function
λ : A → R+, where R+ denotes the set of non-negative real numbers. For each arc a ∈ A, the
value λ(a) specifies the time at which the two end vertices of a can communicate. Thus, in an
arborescence T with a root r, in order that the root r can send information to every vertex, for
every vertex v, the time labels of the arcs of the directed path from r to v must be non-decreasing.
An arborescence T in D satisfying this property is called a time-respecting arborescence. For
example, Figure 1 illustrates four different time-respecting arborescences in a digraph.

In this paper, we study time-respecting arborescences in digraphs from the viewpoint of com-
binatorial reconfiguration. Combinatorial reconfiguration [13, 16] analyzes the reachability (and
its related questions) of the solution space formed by combinatorial objects under a prescribed
adjacency relation. The algorithmic studies of combinatorial reconfiguration were initiated by
Ito et al. [13], and have been actively studied for this decade. (See, e.g., a survey [16].)

1.1 Our problem and related work

In this paper, we introduce the Time-Respecting Arborescence Reconfiguration problem,
as follows: Given two time-respecting arborescences in a digraph D, we are asked to determine
whether or not we can transform one into the other by exchanging a single arc in the current
arborescence at a time, so that all intermediate results remain time-respecting arborescences in D.
(We call this sequence of arborescences a reconfiguration sequence.) For example, Figure 1 shows
such a transformation between the blue and red arborescences, and hence it is a yes-instance.

This is the first paper, as far as we know, which deals with the Time-Respecting Arbores-
cence Reconfiguration problem. However, reconfiguration problems have been studied for
spanning trees and arborescences without time-respecting condition. For undirected graphs with-
out time-respecting condition, it is well-known that every two spanning trees can be transformed
into each other by exchanging a single edge at a time, because the set of spanning trees forms the
family of bases of a matroid [7, 13]. For digraphs without time-respecting condition, Ito et al. [14]
proved that every two arborescences can be transformed into each other by exchanging a single
arc at a time.1 Interestingly, we note that this property does not hold when considering the time-
respecting condition. (See Figure 2.) Furthermore, in both undirected [13] and directed [14] cases,
shortest transformations can be found in polynomial time, because there is a transformation that
exchanges only edges (or arcs) in the symmetric difference of two given spanning trees (resp. ar-
borescences).

We here review some further previous work. Reconfiguration problems have been studied for
various kinds of combinatorial objects, mainly in undirected graphs. Reconfiguration of spanning
trees with additional constrains was studied in [2, 3]. Hanaka et al. [12] introduced the framework
of subgraph reconfiguration problems, and studied the problem for several combinatorial objects,

1Note that, in the paper [14], an arborescence is not necessarily a spanning subgraph. Arborescence in our paper
corresponds to spanning arborescence in [14].

2

2

3

4

1
2

3

4

1

Figure 2: There is no desired transformation from the time-respecting arborescence induced by
blue arcs to the time-respecting arborescence induced by red arcs.

Table 1: The column Reachability shows the answer for the question whether every arborescence is
reachable from any other arborescence. The column Reachability shows the results for the problem
of determining whether the target arborescence is reachable from the initial one. The symbol P
means that the problem can be solved in polynomial time. The column Shortest variant shows the
results for the problem of finding a shortest reconfiguration sequence.

Reachability Shortest sequence

Arborescences without time-respecting always yes [14] P [14]

Identical roots with time-respecting always yes [Thm 1] P [Thm 1]

Non-identical roots with time-respecting P [Thm 2] NP-complete [Thm 3]

including trees: they showed that every two trees (that are not necessarily spanning) in an undi-
rected graph can be transformed into each other by exchanging a single edge at a time unless two
input trees have different numbers of edges. Motivated by applications in motion planning, Biasi
and Ophelders [1], Demaine et al. [5], and Gupta et al. [11] studied some variants of reconfiguring
undirected paths. These variants are shown to be PSPACE-complete in general, while they are
fixed-parameter tractable when parameterized by the length of input paths.

1.2 Our contribution

Our contributions are summarized as follows. We first prove that if the roots of the initial and target
time-respecting arborescences are the same, then the target arborescence is always reachable from
the initial one and we can find a shortest reconfiguration sequence in polynomial time. Furthermore,
we show if the roots of the initial and target time-respecting arborescences are not the same, then
the target arborescence may not be reachable from the initial one. On the other hand, we show that
we can determine whether the target arborescence is reachable from the initial one in polynomial
time. Finally, we prove that it is NP-hard to find a shortest reconfiguration sequence in the case
where the roots of the initial and target time-respecting arborescences are not the same. Our results
show an interesting contrast to the results for (ordinary) arborescence reconfiguration problems [14].
See Table 1 for the summary of our results.

2 Preliminaries

Let D = (V,A) be a digraph with possibly multiple arcs. We write V (D) and A(D) to denote
the vertex set and arc set of D, respectively. For an arc e = (u, v) ∈ A, we call v the head of e,
denoted head(e), and u the tail of e, denoted tail(e). For v ∈ V , we denote by δ−D(v) the set of arcs
incoming to v in D (i.e. δ−D(v) = {e | e = (u, v) ∈ A}) and by δ+D(v) the set of outgoing arcs from
v (i.e. δ+D(v) = {e | e = (v, u) ∈ A}). We extend these notations to sets: For X ⊆ V , we define

3

δ−D(X) = {e = (u, v) ∈ E | u ∈ V \X, v ∈ X} and δ+D(X) = {e = (u, v) ∈ E | u ∈ X, v ∈ V \X}.
We may omit the subscript when no confusion arises. For e ∈ A (resp. f ∈ V × V), we denote by
D − e (resp. D + f) the digraph obtained from D by removing e (resp. adding f).

Let r ∈ V . An r-arborescence in D is a spanning acyclic subgraph of D in which there is
exactly one (directed) path to any vertex from r. An arborescence (without specifying r) in D is
an r-arborescence for some r ∈ V . Let λ : A → R+. For a directed path P that traverses arcs
e1, e2, . . . , ek in this order, we say that P is time-respecting for λ if λ(ei) ≤ λ(ei+1) for 1 ≤ i < k.
An (r-)arborescence T is time-respecting for λ if every directed path in it is time-respecting. When
λ is clear from the context, we may just say P (or T) is time-respecting.

For two arborescences T1 and T2 in D, a reconfiguration sequence between T1 and T2 is a
sequence of arborescences (T 0, T 1, . . . , T ℓ) in D with T 0 = T1 and T ℓ = T2 such that for 0 ≤ i < ℓ,
|A(Ti) \A(Ti+1)| = |A(Ti+1) \A(Ti)| = 1. In other words, Ti+1 is obtained from Ti by removing an
arc e ∈ A(Ti) and adding an arc f /∈ A(Ti) (i.e., Ti+1 = Ti−e+f). The length of the reconfiguration
sequence is defined as ℓ.

3 Minimal time-respecting r-arborescences

In this section, we give a polynomial-time algorithm for computing a minimal time-respecting r-
arborescence of a digraph D = (V,A) for λ. This arborescence plays a vital role in the subsequent
section.

Let r ∈ V . We assume that D has at least one time-respecting r-arborescence. A function
d : V → R+ is defined as

d(v) = min{λ(e) | e ∈ δ−(v) and ∃ time-respecting path from r containing e},

where we define d(r) = 0. Since every directed path from r in the r-arborescence is time-respecting,
this function d is well-defined (under the assumption that D has at least one time-respecting r-
arborescence). A time-respecting arborescence T is said to be minimal if the unique arc e of T
incoming to v satisfies λ(e) = d(v) for v ∈ V \ {r}. Now, we claim that (under the assumption) D
has a minimal time-respecting r-arborescence, which can be found by the following algorithm.

1. Set R := {r}, T := ∅, and d′(r) := 0.

2. Repeat the following two steps until R = V .

3. Let e ∈ δ+D(R) minimizing λ(e) subject to λ(e) ≥ d′(tail(e)). If there is no such an arc
e ∈ δ+D(R), the algorithm halts.

4. R := R ∪ {head(e)}, T := T ∪ {e}, and d′(head(e)) := λ(e).

Note that T is an arc set in the algorithm, which is sometimes identified with the subgraph
induced by T . In the following, we use R, T , and d′ to denote the values of R, T , and d′ after the
execution of the above algorithm, respectively.

Lemma 1. Suppose that D has a time-respecting r-arborescence. Then, T forms a minimal time-
respecting r-arborescence of D.

4

Proof. By the construction of T , every (directed) path from r in T is time-respecting, and hence
we have d′(v) ≥ d(v) for v ∈ R. For 1 ≤ i ≤ |T |, we let ei be the arc selected at Step 3 in the ith
iteration of the execution. Let v0 = r and let vi = head(ei). In the following, we first show, by
induction, that d′(vi) = d(vi) for all 0 ≤ i ≤ |T |. The base case i = 0 is clear from the definition
(i.e., d′(r) = d(r)).

Let i ≥ 1 and let Ri = {vj | 0 ≤ j < i} be the set of vertices that are “reached” from r before
the ith iteration. Suppose for contradiction that d′(vi) > d(vi). Let P be a time-respecting path
from r to vi in which the unique arc e incoming to vi satisfies λ(e) = d(vi). Since r ∈ Ri and
vi /∈ Ri, there is an arc e′ on P such that tail(e′) ∈ Ri and head(e′) /∈ Ri, i.e., e

′ ∈ δ+D(Ri). For
such an arc e′, we have λ(e′) ≤ λ(e) = d(vi) < d′(vi) = λ(ei). This implies that ei cannot be
selected at Step 3 in the ith iteration, because e′ ∈ δ+(Ri) and λ(e′) ≥ d(tail(e′)) = d′(tail(e′)) by
the induction hypothesis.

We next show that R = V , which implies that T forms a minimal time-respecting r-arborescence
of D. As we have shown above, d′(v) = d(v) for all v ∈ R. Suppose for contradiction that R ̸= V .
We note that every arc e ∈ δ+D(R) satisfies that λ(e) < d′(tail(e)). Let v ∈ V \ R and let P be
an arbitrary time-respecting path from r to v in D. We can choose such a vertex v in such a way
that all vertices of P except for v belong to R, as r ∈ R and any subpath of P starting from r is
also time-respecting. Let e be the unique arc of P incoming to v. Since P is time-respecting and
tail(e) ∈ R, λ(e) ≥ d(tail(e)) = d′(tail(e)). This contradicts the fact that every arc e′ ∈ δ+D(R)
satisfies λ(e′) < d′(tail(e′)). Therefore, the lemma follows.

As a consequence of this lemma, we have the following corollary.

Corollary 1. In polynomial time, we can compute a minimal time-respecting r-arborescence of D
or conclude that D has no time-respecting r-arborescence.

4 Time-respecting r-arborescence reconfiguration

In this section, we give a polynomial-time algorithm for finding a shortest reconfiguration sequence
between given two time-respecting r-arborescences of a graph D such that all intermediates are
also time-respecting r-arborescences of D (if any). We show, in fact, that such a (shortest) recon-
figuration sequence between T1 and T2 always exists, in contrast to the fact that, for some digraph,
there is no reconfiguration sequence between time-respecting arborescences of distinct roots (see
Figure 2).

Let D = (V,A) be a digraph with λ : A→ R+ and let r ∈ V . Let T1 and T2 be time-respecting
r-arborescences of D. We construct a digraph D∗ = (V,A∗), where A∗ = A(T1) ∪ A(T2). As there
is a time-respecting r-arborescence of D∗ (say, T1), a minimal time-respecting r-arborescence T ∗

of D∗ can be computed in polynomial time with the algorithm in Corollary 1.
To show the existence of a reconfiguration sequence between T1 and T2 in D, it suffices to give

a reconfiguration sequence between T1 and T ∗ in D∗ as T2 is symmetric and D∗ is a subgraph of
D.

We transform T1 into the minimal time-respecting r-arborescence T ∗ as follows. Let k =
|A(T ∗)|. Let e1, e2, . . . , ek be the arcs of T ∗ such that ei is selected at Step 3 in the ith iteration
of the algorithm in Corollary 1. We set T 0 = T1. For 1 ≤ i ≤ k in increasing order, we define
T i = T i−1−fi+ei (possibly ei = fi), where fi is the unique arc of T1 incoming to head(ei). Clearly,
T k = T ∗. Since the update operation preserves the indegree of each vertex and the reachability

5

of each vertex from r, every T i is always an r-arborescence of D∗. Moreover, the following lemma
ensures that T i is time-respecting.

Lemma 2. For 0 ≤ i ≤ k, T i is a time-respecting r-arborescence of D∗.

Proof. It suffices to show that for 1 ≤ i ≤ k, T i is time-respecting, assuming that T i−1 is time-
respecting. It suffices to consider the case when fi ̸= ei. Since head(ei) = head(fi), T

i−1 + ei
has exactly two paths P and P ′ from r to head(ei), where P (resp. P ′) is the one that contains
ei (resp. fi). Since T i−1 is time-respecting, P ′ is indeed time-respecting. Similarly, since P (⊆
{e1, e2, . . . , ei}) is a path in T ∗, it is also time-respecting. As T ∗ is minimal, we have d(head(fi)) =
λ(ei), which implies that λ(fi) ≥ λ(ei). Therefore, T

i is time-respecting.

As T k = T ∗, this lemma shows that there is a reconfiguration sequence between T1 and T ∗.
Since we update T ← T−ei+fi only when ei ̸= fi, the obtained sequence has length |A(T ∗)\A(T1)|.
Similarly, there is a sequence between T2 and T ∗ of length |A(T ∗) \ A(T2)|. By combining them,
we obtain a reconfiguration sequence from T1 to T2 of length |A(T ∗) \A(T1)|+ |A(T ∗) \A(T2)|.

We now show that this length is equal to |A(T1) \ A(T2)|, which implies that the sequence is
shortest among all reconfiguration sequences between T1 and T2. For any e ∈ A(T1) ∩A(T2), since
e is a unique arc entering head(e) in D∗, we obtain e ∈ A(T ∗). This means that A(T1) ∩ A(T2) ⊆
A(T ∗). Then, we obtain

|A(T ∗) \A(T1)|+ |A(T ∗) \A(T2)| = |A(T ∗) \ (A(T1) ∩A(T2))|
= |A(T ∗)| − |A(T1) ∩A(T2)| = |A(T1) \A(T2)|,

where we use A(T ∗) ⊆ A(T1)∪A(T2) in the first equality, use A(T1)∩A(T2) ⊆ A(T ∗) in the second
equality, and use |A(T ∗)| = |A(T1)| in the last equality.

Theorem 1. There is a reconfiguration sequence between two time-respecting r-arborescence T1

and T2 of D with length |A(T1) \ A(T2)|. Moreover, such a reconfiguration sequence can be found
in polynomial time.

5 Time-respecting arborescence reconfiguration

For two time-respecting arborescences T1 and T2 in a digraph D = (V,A) with λ : A → R+, we
consider the problem of determining whether there exists a reconfiguration sequence from T1 to
T2, which we call Time-respecting Arborescence Reconfiguration. By Theorem 1, for
any two r-arborescences T1 and T2, there exists a reconfiguration sequence from T1 to T2, that is,
the answer of Time-respecting r-Arborescence Reconfiguration is always yes. However,
Time-respecting Arborescence Reconfiguration does not have the property, that is, there
is a no-instance in the problem (see Fig. 2). In this section, we show that the problem can be solved
in polynomial time.

Theorem 2. We can solve Time-respecting Arborescence Reconfiguration in polynomial
time.

To prove the theorem, we introduce some concepts. For t ∈ R+, we say that a subgraph
H = (V (H), A(H)) of D is t-labeled extendible if

6

1. λ(e) = t for all e ∈ A(H) and

2. the digraph D′ obtained from D by contracting H into a vertex rH has a time-respecting
rH -arborescence T such that λ(e) ≥ t for e ∈ A(T).

We can see that if a t-labeled extendible subgraph H contains an arborescence TH , then A(TH) ∪
A(T) induces a time-respecting arborescence in D.

Let D = (V,A) be a digraph and define the reconfiguration graph G(D) as follows: the vertex
set consists of all the time-respecting arborescences of D and two time-respecting arborescences are
joined by an (undirected) edge in the reconfiguration graph if and only if one is obtained from the
other by exchanging a single arc. For a vertex r ∈ V , let Gr be the subgraph of G(D) induced by
the time-respecting r-arborescences. By Theorem 1, Gr is connected for r ∈ V (D). Let G′(D) be
the graph obtained from G(D) by contracting Gr into a vertex vr for each r ∈ V (D). We show the
following necessary and sufficient condition for two vertices in G′(D) to be adjacent to each other.

Lemma 3. Let r1 and r2 be two distinct vertices in a digraph D = (V,A) with λ : A→ R+. Then
vr1 and vr2 are adjacent in G′(D) if and only if one of the following holds:

(i) there exist an arc f = (r2, r1) and a time-respecting r1-arborescence T1 such that λ(f) ≤ λ(e′)
for each e′ ∈ δ+T1

(r1) \ δ−T1
(r2),

(ii) there exist an arc e = (r1, r2) and a time-respecting r2-arborescence T2 such that λ(e) ≤ λ(e′)
for each e′ ∈ δ+T2

(r2) \ δ−T2
(r1),

(iii) for some t ∈ R+, D has a t-labeled extendible directed cycle C that contains both r1 and r2.

Proof. [Necessity (“only if” part)] Suppose that vr1 and vr2 are adjacent in G′(D). Then there
exist a time-respecting r1-arborescence T1 and two arcs e and f in A(D) such that T1 − e + f is
a time-respecting r2-arborescence. Let T2 := T1 − e + f . Since T1 is an r1-arborescence and T2

is an r2-arborescence, head(e) = r2 and head(f) = r1. Then, T1 + f contains a directed cycle C,
which contains e. (Otherwise, T2 contains a directed cycle, which contradicts the fact that T2 is
an arborescence.) Let ℓ denote the length of C. Suppose that C traverses arcs e1, e2, . . . , eℓ in this
order when starting from r1, that is, eℓ = f and head(ei) = tail(ei+1) for each i, where eℓ+1 = e1.
We can easily see that (i) holds if f = (r2, r1) and (ii) holds if e = (r1, r2).

Hence it suffices to consider the case when f ̸= (r2, r1) and e ̸= (r1, r2). Let j be the index such
that ej = e. Note that j ̸= 1 by e ̸= (r1, r2), j ̸= ℓ − 1 by f ̸= (r2, r1), and j ̸= ℓ by e ̸= f . Since
T1 is a time-respecting r1-arborescence, we obtain the following inequalities.

λ(e1) ≤ λ(e2) ≤ · · · ≤ λ(ej+1) ≤ · · · ≤ λ(eℓ−1) (1)

Since T2 is a time-respecting r2-arborescence, we obtain the following inequalities.

λ(ej+1) ≤ λ(ej+2) ≤ · · · ≤ λ(eℓ) ≤ λ(e1) (2)

By (1) and (2), we obtain λ(e1) = λ(e2) = · · · = λ(eℓ). Let D′ be the digraph obtained from D
by contracting C into a vertex rC . Then the digraph induced by the arcs in A(T1) \ A(C) is a
time-respecting rC-arborescence in D′. Hence (iii) holds.

7

[Sufficiency (“if” part)] Suppose that (i) holds. Let e be the arc in T1 such that head(e) = r2.
Then T1 − e + f is a time-respecting r2-arborescence in D. If (ii) holds, then we obtain a time-
respecting r1-arborescence in D from T2 by one step by a similar argument above.

Suppose that (iii) holds. Let e and f be the arcs in C such that head(e) = r2 and head(f) = r1,
respectively. Let D′ be the digraph obtained from D by contracting C into rC , and let TC be a time-
respecting rC-arborescence in D′. Then the digraph T1 induced by the arcs in A(TC)∪A(C)\{f} is
a time-respecting r1-arborescence in D and the digraph T2 induced by the arcs in A(T)∪A(C)\{e}
is a time-respecting r2-arborescence in D. Since T2 = T1− e+ f , vr1 and vr2 are adjacent in G′(D).

This completes the proof of Lemma 3.

Let r1 and r2 be two distinct vertices in D. To check condition (i) in Lemma 3, it suffices to give
a polynomial-time algorithm for finding a time-respecting r1-arborescence T1 such that λ(e′) ≥ λ(f)
for each e′ ∈ δ+T1

(r1)\δ−T1
(r2), where f = (r2, r1). This can be done in polynomial time by removing

all the arcs e ∈ δ+D(r1) \ δ
−
D(r2) with λ(e) < λ(f) from D and by applying Corollary 1 to find a

time-respecting r1-arborescence in the obtained digraph. Similarly, condition (ii) in Lemma 3 can
be checked in polynomial time.

We consider to check condition (iii) in Lemma 3. However, it is NP-hard to find a directed
cycle in a digraph containing two specified vertices [9]. To overcome this difficulty, we consider a
supergraph of G′(D), which is a key ingredient in our algorithm.

For t ∈ R+, let Dt denote the subgraph of D induced by the edges of label t. We consider the
following condition instead of (iii):

(iii)’ for some t ∈ R+, r1 and r2 are contained in the same strongly connected component in Dt,
which is t-labeled extendible.

We can see that (iii)’ is a relaxation of (iii) as follows. If r1 and r2 are contained in a t-labeled
extendible directed cycle C, then they are contained in the same connected component H of Dt.
Furthermore, since C is t-labeled extendible, so is H, which means that (iii)’ holds.

Define Ĝ(D) as the graph whose vertex set is the same as G′(D), and vr1 and vr2 are adjacent
in G′(D) if and only if r1 and r2 satisfy (i), (ii), or (iii)’. Since (iii)’ is a relaxation of (iii), Lemma 3
shows that Ĝ(D) is a supergraph of G′(D). We now show the following lemma.

Lemma 4. Let r1 and r2 be distinct vertices in D that satisfy condition (iii)’. Then, G′(D) contains
a path between vr1 and vr2.

Proof. Let H be the t-labeled extendible strongly connected component in Dt that contains r1 and
r2, where t ∈ R+. Since H is strongly connected, it contains a directed path from r1 to r2 that
traverses vertices p0, p1, . . . , pk in this order, where p0 = r1 and pk = r2. Then, for 0 ≤ i ≤ k − 1,
H has a directed cycle Ci containing arc (pi, pi+1) as H is strongly connected. Since H is t-labeled
extendible and strongly connected, we see that Ci is also t-labeled extendible. Therefore, condition
(iii) in Lemma 3 shows that vpi and vpi+1 are adjacent in G′(D), which implies that G′(D) contains
a path connecting vr1 = vp0 and vr2 = vpk .

By this lemma and by the fact that Ĝ(D) is a supergraph of G′(D), we obtain the following
lemma.

Lemma 5. For any distinct vertices r1 and r2 in D, Ĝ(D) has a vr1-vr2 path if and only if G′(D)
has one.

8

This lemma shows that it suffices to check the reachability in Ĝ(D) to solve Time-respecting
Arborescence Reconfiguration. For distinct vertices r1 and r2 in D, (i) and (ii) can be
checked in polynomial time as described above. We can check condition (iii)’ by applying the
following algorithm for each t ∈ {λ(e) | e ∈ A(D)}.

1. Construct the subgraph Dt of D induced by the edges of label t.

2. If r1 and r2 are contained in the same strongly connected component H in Dt, then go to
Step 3. Otherwise, (iii)’ does not hold for the current t.

3. Contract H into a vertex rH to obtain a digraph D′. Remove all the arcs e ∈ A(D′) with
λ(e) < t from D′ and find a time-respecting rH -arborescence in this digraph by Corollary 1.

4. If a time-respecting rH -arborescence is found, then r1 and r2 satisfy condition (iii)’. Other-
wise, (iii)’ does not hold for the current t.

Since we can decompose a digraph into strongly connected components in polynomial time, this
algorithm runs in polynomial time. Therefore, by checking (i), (ii), and (iii)’ for every pair of r1
and r2, we can construct Ĝ(D) in polynomial time.

By Theorem 1 and Lemma 5, a time-respecting r1-arborescence T1 can be reconfigured to a time-
respecting r2-arborescence T2 if and only if Ĝ(D) contains a vr1-vr2 path, which can be checked in
polynomial time. This completes the proof of Theorem 2.

6 NP-completeness of shortest reconfiguration

For two time-respecting arborescences T1 and T2 in a digraph D = (V,A) with λ : A→ R+ and for
a positive integer ℓ, we consider the problem of determining whether there exists a reconfiguration
sequence from T1 to T2 of length at most ℓ, which we call Time-respecting Arborescence
Shortest Reconfiguration. Note that the length is defined as the number of swap operations,
which is equal to the number of time-respecting arborescences in the sequence minus one. In this
section, we prove the NP-completeness of this problem.

Theorem 3. Time-respecting Arborescence Shortest Reconfiguration is NP-complete.

Proof. The proof of Theorem 2 shows that if T1 is reconfigurable to T2, then there exists a re-
configuration sequence whose length is bounded by a polynomial in |V |. This implies that Time-
respecting Arborescence Shortest Reconfiguration is in NP.

To show the NP-hardness, we reduce Vertex Cover to Time-respecting Arborescence
Shortest Reconfiguration. Recall that, in Vertex Cover, we are given a graph G = (V,E)
and a positive integer k, and the task is to determine whether G contains a vertex cover of size at
most k or not.

Suppose that G = (V,E) and k form an instance of Vertex Cover. We construct a digraph
D = (W,A) with multiple arcs as follows:

W = {r1, r2} ∪ {wv | v ∈ V } ∪ {we | e ∈ E},
A1 = {(r1, we), (r2, we) | e ∈ E}, A2 = {(r1, r2), (r2, r1)},
A3 = {av = (r2, wv) | v ∈ V }, A4 = {(wv, we) | e ∈ δG(v)},
A5 = {a′v = (r2, wv) | v ∈ V }, A = A1 ∪A2 ∪A3 ∪A4 ∪A5.

9

wv

we

1 1 1

1 1 1

22

4 4 4

r1

r2

35535 3

T1

wv

we

1 1 1

1 1 1

22

4 4 4

r1

r2

35535 3

T2

Figure 3: An illustration of the digraph D constructed from G and two time-respecting arbores-
cences T1 and T2 in the proof of Theorem 3.

Here, wv and we are newly introduced vertices associated with v ∈ V and e ∈ E, respectively. Note
that av ∈ A3 and a′v ∈ A5 are distinct, that is, they form multiple arcs. For i ∈ {1, 2, 3, 4, 5} and
for a ∈ Ai, we define λ(a) = i. Let ℓ = 2|E|+ 2k + 1. Let

T1 = {(r1, r2)} ∪ {(r1, we) | e ∈ E} ∪A5,

T2 = {(r2, r1)} ∪ {(r2, we) | e ∈ E} ∪A5.

See Figure 3 for an illustration. One can easily see that T1 and T2 are time-respecting arbores-
cences in D. This completes the construction of an instance of Time-respecting Arborescence
Shortest Reconfiguration.

To prove the validity of the reduction, it suffices to show that G contains a vertex cover of size
at most k if and only if D admits a reconfiguration sequence from T1 to T2 of length at most ℓ.

[Necessity (“only if” part)] Suppose that G contains a vertex cover X ⊆ V with |X| ≤ k. For
e ∈ E, let σ(e) be an end vertex of e that is contained in X. If both of the end vertices of e are

10

contained in X, then we choose one arbitrarily. Let

T ′
1 = {(r1, r2)} ∪ {av | v ∈ X} ∪ {a′v | v ∈ V \X} ∪ {(wσ(e), we) | e ∈ E},

T ′
2 = {(r2, r1)} ∪ {av | v ∈ X} ∪ {a′v | v ∈ V \X} ∪ {(wσ(e), we) | e ∈ E},

which are time-respecting arborescences in D. Then, T1 can be transformed into T ′
1 as follows:

replace a′v with av for each v ∈ X and then replace (r1, we) with (wσ(e), we) for each e ∈ E. This
shows that there exists a reconfiguration sequence from T1 to T ′

1 of length |X|+ |E|. Similarly, T ′
2

can be transformed into T2 in |X|+ |E| steps. Since T ′
1 and T ′

2 are adjacent, by combining the above
transformations, we obtain a reconfiguration sequence from T1 to T2 of length 2(|X|+ |E|)+ 1 ≤ ℓ,
which shows the necessity.

[Sufficiency (“if” part)] Suppose that there is a reconfiguration sequence from T1 to T2 of length
at most ℓ = 2|E| + 2k + 1. Observe that, for any arborescence in D, its root is either r1 or r2,
because D contains no arc from W \ {r1, r2} to {r1, r2}. This shows that the root has to move
from r1 to r2 in the reconfiguration sequence, that is, the reconfiguration sequence contains two
consecutive time-respecting arborescences T ′

1 and T ′
2 such that the root of T ′

i is ri for i = 1, 2.
Since (r1, r2) is the unique arc entering r2, T ′

1 contains (r1, r2). Similarly, T ′
2 contains (r2, r1).

Therefore, T ′
2 is obtained from T ′

1 by removing (r1, r2) and adding (r2, r1), which means that
T ′
1 = F ∪ {(r1, r2)} and T ′

2 = F ∪ {(r2, r1)} for some F ⊆ A. Since T ′
1 and T ′

2 are time-respecting
and λ((r1, r2)) = λ((r2, r1)) = 2, we obtain F ∩A1 = ∅. Hence, for each e ∈ E, F contains a unique
arc in A4 entering we, that is, there exists σ(e) ∈ V such that (wσ(e), we) ∈ F .

Let X = {v ∈ V | av ∈ F}. We now show that X is a vertex cover of size at most k. For each
e ∈ E, since λ((wσ(e), we)) < λ(a′σ(e)), F does not contain a′σ(e). This shows aσ(e) ∈ F , because F

contains exactly one arc entering wσ(e). Therefore, σ(e) ∈ X for any e ∈ E, which implies that X
is a vertex cover in G.

The length of the reconfiguration sequence from T1 to T ′
1 is at least |T ′

1 \ T1| = |{(wσ(e), we) |
e ∈ E} ∪ {av | v ∈ X}| = |E| + |X|. Similarly, the length from T ′

2 to T2 is at least |E| + |X|. By
considering a step from T ′

1 to T ′
2, the total length of the reconfiguration sequence from T1 to T2 is

at least 2|E|+ 2|X|+ 1. Since this length is at most ℓ, we obtain |X| ≤ k. This shows that G has
a vertex cover of size at most k.

By the above argument, Vertex Cover is reduced to Time-respecting Arborescence
Shortest Reconfiguration, and hence Time-respecting Arborescence Shortest Re-
configuration is NP-hard.

Remark. The above proof works even if we perturb the value of λ, which shows that Time-
respecting Arborescence Shortest Reconfiguration is NP-complete even when λ(a) ̸=
λ(a′) for distinct a, a′ ∈ A. We also see that the above proof works even if we define λ(a) = 1 for
a ∈ A1, λ(a) = 2 for a ∈ A2∪A3∪A4, and λ(a) = 3 for a ∈ A5. This shows that Time-respecting
Arborescence Shortest Reconfiguration is NP-complete even when λ(a) ∈ {1, 2, 3} for
a ∈ A.

7 Concluding remarks

As described in the introduction, if we remove the “time-respecting” constraint, then any ar-
borescence T1 can be transformed into another arborescence T2 in |T1 \ T2| steps; see [14]. This

11

implies that Time-respecting Arborescence Shortest Reconfiguration can be solved in
polynomial-time if λ(a) takes the same value for any a ∈ A. On the other hand, as described in Re-
mark 6, Time-respecting Arborescence Shortest Reconfiguration is NP-complete even
if λ(a) takes one of the three given values for a ∈ A. It is open whether the shortest reconfiguration
sequence can be found in polynomial time when |{λ(a) | a ∈ A}| = 2.

References

[1] Marzio De Biasi and Tim Ophelders. “The complexity of snake and undirected NCL variants”.
In: Theoretical Computer Science 748 (2018), pp. 55–65. doi: 10.1016/j.tcs.2017.10.031.

[2] Nicolas Bousquet, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Paul Ouvrard, Akira
Suzuki, and Kunihiro Wasa. “Reconfiguration of Spanning Trees with Degree Constraint or
Diameter Constraint”. In: Proceedings of the 39th International Symposium on Theoretical
Aspects of Computer Science (STACS 2022). Ed. by Petra Berenbrink and Benjamin Mon-
mege. Vol. 219. Leibniz International Proceedings in Informatics. Wadern, Germany: Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 15:1–15:21. doi: 10.4230/LIPIcs.STACS.
2022.15.

[3] Nicolas Bousquet, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Paul Ouvrard, Akira
Suzuki, and Kunihiro Wasa. “Reconfiguration of Spanning Trees with Many or Few Leaves”.
In: Proceedings of the 28th Annual European Symposium on Algorithms (ESA 2020). Ed.
by Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders. Vol. 173. Leibniz International
Proceedings in Informatics. Wadern, Germany: Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2020, 24:1–24:15. doi: 10.4230/LIPIcs.ESA.2020.24.

[4] Yoeng-Jin Chu. “On the shortest arborescence of a directed graph”. In: Scientia Sinica 14
(1965), pp. 1396–1400.

[5] Erik D. Demaine, David Eppstein, Adam Hesterberg, Kshitij Jain, Anna Lubiw, Ryuhei
Uehara, and Yushi Uno. “Reconfiguring Undirected Paths”. In: Proceedings of the 16th In-
ternational Symposium on Algorithms and Data Structures (WADS 2019). Ed. by Zachary
Friggstad, Jörg-Rüdiger Sack, and Mohammad R. Salavatipour. Vol. 11646. Lecture Notes in
Computer Science. Cham, Switzerland: Springer, 2019, pp. 353–365. doi: 10.1007/978-3-
030-24766-9_26.

[6] Jack Edmonds. “Edge-disjoint branchings”. In: Combinatorial Algorithms. Ed. by R. Rustin.
New York, NY: Academic Press, 1973, pp. 91–96.

[7] Jack Edmonds. “Matroids and the greedy algorithm”. In: Mathematical Programming 1.1
(1971), pp. 127–136. doi: 10.1007/BF01584082.

[8] Jack Edmonds. “Optimum branchings”. In: Journal of Research of the national Bureau of
Standards B 71.4 (1967), pp. 233–240. doi: 10.6028/jres.071b.032.

[9] Steven Fortune, John Hopcroft, and James Wyllie. “The directed subgraph homeomorphism
problem”. In: Theoretical Computer Science 10.2 (1980), pp. 111–121. doi: 10.1016/0304-
3975(80)90009-2.

[10] Leonidas Georgiadis. “Arborescence optimization problems solvable by Edmonds’ algorithm”.
In: Theoretical Computer Science 301.1 (2003), pp. 427–437. doi: 10.1016/S0304-3975(02)
00888-5.

12

https://doi.org/10.1016/j.tcs.2017.10.031
https://doi.org/10.4230/LIPIcs.STACS.2022.15
https://doi.org/10.4230/LIPIcs.STACS.2022.15
https://doi.org/10.4230/LIPIcs.ESA.2020.24
https://doi.org/10.1007/978-3-030-24766-9_26
https://doi.org/10.1007/978-3-030-24766-9_26
https://doi.org/10.1007/BF01584082
https://doi.org/10.6028/jres.071b.032
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.1016/S0304-3975(02)00888-5
https://doi.org/10.1016/S0304-3975(02)00888-5

[11] Siddharth Gupta, Guy Sa’ar, and Meirav Zehavi. “The Parameterized Complexity of Motion
Planning for Snake-Like Robots”. In: Journal of Artificial Intelligence Research 69 (2020),
pp. 191–229. doi: 10.1613/jair.1.11864.

[12] Tesshu Hanaka, Takehiro Ito, Haruka Mizuta, Benjamin Moore, Naomi Nishimura, Vijay
Subramanya, Akira Suzuki, and Krishna Vaidyanathan. “Reconfiguring spanning and induced
subgraphs”. In: Theoretical Computer Science 806 (2020), pp. 553–566. doi: 10.1016/j.tcs.
2019.09.018.

[13] Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha
Sideri, Ryuhei Uehara, and Yushi Uno. “On the Complexity of Reconfiguration Problems”.
In: Theoretical Computer Science 412.12-14 (2011), pp. 1054–1065. doi: 10.1016/j.tcs.
2010.12.005.

[14] Takehiro Ito, Yuni Iwamasa, Yasuaki Kobayashi, Yu Nakahata, Yota Otachi, and Kunihiro
Wasa. “Reconfiguring (non-spanning) arborescences”. In: Theoretical Computer Science 943
(2023), pp. 131–141. doi: 10.1016/j.tcs.2022.12.007.

[15] David Kempe, Jon M. Kleinberg, and Amit Kumar. “Connectivity and Inference Problems
for Temporal Networks”. In: Journal of Computer and System Sciences 64.4 (2002), pp. 820–
842. doi: 10.1006/jcss.2002.1829.

[16] Naomi Nishimura. “Introduction to Reconfiguration”. In: Algorithms 11.4 (2018), p. 52. doi:
10.3390/a11040052.

13

https://doi.org/10.1613/jair.1.11864
https://doi.org/10.1016/j.tcs.2019.09.018
https://doi.org/10.1016/j.tcs.2019.09.018
https://doi.org/10.1016/j.tcs.2010.12.005
https://doi.org/10.1016/j.tcs.2010.12.005
https://doi.org/10.1016/j.tcs.2022.12.007
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.3390/a11040052

	1 Introduction
	1.1 Our problem and related work
	1.2 Our contribution

	2 Preliminaries
	3 Minimal time-respecting
	4 Time-respecting reconfiguration
	5 Time-respecting arborescence reconfiguration
	6 NP-completeness of shortest reconfiguration
	7 Concluding remarks

