Abstract
An arborescence, which is a directed analogue of a spanning tree in an undirected graph, is one of the most fundamental combinatorial objects in a digraph. In this paper, we study arborescences in digraphs from the viewpoint of combinatorial reconfiguration, which is the field where we study reachability between two configurations of some combinatorial objects via some specified operations. Especially, we consider reconfiguration problems for time-respecting arborescences, which were introduced by Kempe, Kleinberg, and Kumar. We first prove that if the roots of the initial and target time-respecting arborescences are the same, then the target arborescence is always reachable from the initial one and we can find a shortest reconfiguration sequence in polynomial time. Furthermore, we show if the roots are not the same, then the target arborescence may not be reachable from the initial one. On the other hand, we show that we can determine whether the target arborescence is reachable form the initial one in polynomial time. Finally, we prove that it is NP-hard to find a shortest reconfiguration sequence in the case where the roots are not the same. Our results show an interesting contrast to the previous results for (ordinary) arborescences reconfiguration problems.
This work was partially supported by JSPS KAKENHI Grant Numbers JP18H04091, JP19K11814, JP20H05793, JP20H05794, JP20H05795, JP20K11666, JP20K11692, JP20K19742, JP20K23323, JP22K17854, JP22K13956.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Biasi, M.D., Ophelders, T.: The complexity of snake and undirected NCL variants. Theor. Comput. Sci. 748, 55–65 (2018). https://doi.org/10.1016/j.tcs.2017.10.031
Bousquet, N., et al.: Reconfiguration of spanning trees with many or few leaves. In: Grandoni, F., Herman, G., Sanders, P. (eds.) Proceedings of the 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics, Wadern, Germany, vol. 173, pp. 24:1–24:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ESA.2020.24
Bousquet, N., et al.: Reconfiguration of spanning trees with degree constraint or diameter constraint. In: Berenbrink, P., Monmege, B. (eds.) Proceedings of the 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics, Wadern, Germany, vol. 219, pp. 15:1–15:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.STACS.2022.15
Chu, Y.J.: On the shortest arborescence of a directed graph. Sci. Sinica 14, 1396–1400 (1965)
Demaine, E.D., et al.: Reconfiguring undirected paths. In: Friggstad, Z., Sack, J.-R., Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp. 353–365. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24766-9_26
Edmonds, J.: Edge-disjoint branchings. In: Rustin, R. (ed.) Combinatorial Algorithms, pp. 91–96. Academic Press, New York (1973)
Edmonds, J.: Optimum branchings. J. Res. Natl. Bureau Stand. B 71(4), 233–240 (1967). https://doi.org/10.6028/jres.071b.032
Edmonds, J.: Matroids and the greedy algorithm. Math. Program. 1(1), 127–136 (1971). https://doi.org/10.1007/BF01584082
Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theor. Comput. Sci. 10(2), 111–121 (1980). https://doi.org/10.1016/0304-3975(80)90009-2
Georgiadis, L.: Arborescence optimization problems solvable by Edmonds’ algorithm. Theor. Comput. Sci. 301(1), 427–437 (2003). https://doi.org/10.1016/S0304-3975(02)00888-5
Gupta, S., Sa’ar, G., Zehavi, M.: The parameterized complexity of motion planning for snake-like robots. J. Artif. Intell. Res. 69, 191–229 (2020). https://doi.org/10.1613/jair.1.11864
Hanaka, T., et al.: Reconfiguring spanning and induced subgraphs. Theor. Comput. Sci. 806, 553–566 (2020). https://doi.org/10.1016/j.tcs.2019.09.018
Ito, T., et al.: On the complexity of reconfiguration problems. Theor. Comput. Sci. 412(12–14), 1054–1065 (2011). https://doi.org/10.1016/j.tcs.2010.12.005
Ito, T., et al.: Reconfiguration of time-respecting arborescences. CoRR arXiv:2305.07262 (2023)
Ito, T., Iwamasa, Y., Kobayashi, Y., Nakahata, Y., Otachi, Y., Wasa, K.: Reconfiguring (non-spanning) arborescences. Theor. Comput. Sci. 943, 131–141 (2023). https://doi.org/10.1016/j.tcs.2022.12.007
Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002). https://doi.org/10.1006/jcss.2002.1829
Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018). https://doi.org/10.3390/a11040052
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ito, T. et al. (2023). Reconfiguration of Time-Respecting Arborescences. In: Morin, P., Suri, S. (eds) Algorithms and Data Structures. WADS 2023. Lecture Notes in Computer Science, vol 14079. Springer, Cham. https://doi.org/10.1007/978-3-031-38906-1_34
Download citation
DOI: https://doi.org/10.1007/978-3-031-38906-1_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-38905-4
Online ISBN: 978-3-031-38906-1
eBook Packages: Computer ScienceComputer Science (R0)