Skip to main content

An ETH-Tight Algorithm for Bidirected Steiner Connectivity

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14079))

Included in the following conference series:

  • 608 Accesses

Abstract

In the Strongly Connected Steiner Subgraph problem, we are given an n-vertex digraph D, a weight function \(w:A(D)\mapsto {\mathbb {R}}^+\) on the arc set of D, and a set of k terminals \(Q\subseteq V(D)\), and our objective is to find a strongly connected subgraph of D containing Q with minimum total weight. The problem is known to be W[1]-hard on general digraphs. However on bi-directed graphs (digraphs where, if uv is an arc then so is vu) with symmetric weight function \(w:A(D)\mapsto {\mathbb {R}}^+\) (i.e., \(w(uv)=w(vu)\) for any \(uv\in A(D)\)), Chitnis, Feldmann and Manurangsi [TALG 2021] showed that the problem is fixed parameter tractable (FPT) with running time \(2^{\mathcal {O}({k^2})}n^{\mathcal {O}(1)}\), where n is the input length. They also show that, unless the Exponential Time Hypothesis (ETH) fails, there is no algorithm for the problem on bi-directed graphs with running time \(2^{o(k)}n^{\mathcal {O}(1)}\). They left the existence of a single-exponential in k time algorithm as an open problem. We resolve this question, by designing an algorithm for the problem running in time \(2^{\mathcal {O}(k)}n^{\mathcal {O}(1)}\) that is asymptotically tight under ETH, thereby closing the gap between the upper and lower-bounds for this problem.

Chitnis, Feldmann and Manurangsi [TALG 2021] showed that an optimum solution to this problem can always be described by a collection of trees, that are mapped to the input graph via homomorphisms, and glued together at the terminal vertices. This structural result allows us to design an algorithm via the combination of a Dreyfus-Wagner style dynamic programming algorithm and the notion of representative sets over linear matroids.

Supported by NSF award CCF-2008838, Swarnajayanti Fellowship grant DST/SJF/MSA-01/2017-18, and ERC grants LOPRE (grant agreement No. 819416) and PARAPATH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The proofs of the results marked with \(\star \) are deferred to the full version of the paper.

  2. 2.

    Here, we slightly abuse the notation and consider z to be a labelled vertex in D with label \(k+1\) if \(\ell _R(h)=k+1\).

References

  1. Bang-Jensen, J., Gutin, G.Z.: Digraphs: Theory, Algorithms and Applications, 2nd edn. Springer, Berlin (2008). Incorporated

    Google Scholar 

  2. Berman, P., Bhattacharyya, A., Makarychev, K., Raskhodnikova, S., Yaroslavtsev, G.: Approximation algorithms for spanner problems and directed Steiner forest. Inf. Comput. 222, 93–107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bern, M.W., Plassmann, P.E.: The Steiner problem with edge lengths 1 and 2. Inf. Process. Lett. 32(4), 171–176 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast subset convolution. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, 11–13 June 2007, pp. 67–74 (2007)

    Google Scholar 

  5. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via iterative randomized rounding. J. ACM 60(1), 6:1–6:33 (2013)

    Google Scholar 

  6. Chekuri, C., Even, G., Gupta, A., Segev, D.: Set connectivity problems in undirected graphs and the directed Steiner network problem. ACM Trans. Algorithms 7(2), 18:1–18:17 (2011)

    Google Scholar 

  7. Chen, W., Huang, N.: The strongly connecting problem on multihop packet radio networks. IEEE Trans. Commun. 37(3), 293–295 (1989)

    Article  Google Scholar 

  8. Chitnis, R., Feldmann, A.E., Manurangsi, P.: Parameterized approximation algorithms for bidirected steiner network problems. ACM Trans. Algorithms 17(2), 12:1–12:68 (2021). https://doi.org/10.1145/3447584

  9. Chitnis, R.H., Hajiaghayi, M., Kortsarz, G.: Fixed-parameter and approximation algorithms: a new look. In: Parameterized and Exact Computation - 8th International Symposium, IPEC 2013, Sophia Antipolis, France, 4–6 September 2013, Revised Selected Papers, pp. 110–122 (2013)

    Google Scholar 

  10. Chitnis, R.H., Hajiaghayi, M., Marx, D.: Tight bounds for planar strongly connected Steiner subgraph with fixed number of terminals (and extensions). In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, 5–7 January 2014, pp. 1782–1801 (2014)

    Google Scholar 

  11. Chlamtáč, E., Dinitz, M., Kortsarz, G., Laekhanukit, B.: Approximating spanners and directed Steiner forest: upper and lower bounds. ACM Trans. Algorithms (TALG) 16(3), 1–31(2020). https://doi.org/10.1145/3381451

  12. Chlebík, M., Chlebíková, J.: The Steiner tree problem on graphs: inapproximability results. Theor. Comput. Sci. 406(3), 207–214 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cygan, M., et al.: On problems as hard as CNF-SAT. ACM Trans. Algorithms 12(3), 41:1–41:24 (2016)

    Google Scholar 

  14. Diestel, R.: Graph Theory, 4th Ed. Graduate texts in mathematics, vol. 173. Springer, Cham (2012)

    Google Scholar 

  15. Dinur, I., Manurangsi, P.: ETH-hardness of approximating 2-CSPs and directed Steiner network. In: 9th Innovations in Theoretical Computer Science Conference, ITCS 2018, 11–14 January 2018, Cambridge, MA, USA, pp. 36:1–36:20 (2018)

    Google Scholar 

  16. Dodis, Y., Khanna, S.: Design networks with bounded pairwise distance. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, 1–4 May 1999, Atlanta, Georgia, USA, pp. 750–759 (1999)

    Google Scholar 

  17. Dom, M., Lokshtanov, D., Saurabh, S.: Kernelization lower bounds through colors and IDs. ACM Trans. Algorithms 11(2), 1–20 (2014). https://doi.org/10.1145/2650261

    Article  MathSciNet  MATH  Google Scholar 

  18. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1(3), 195–207 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  19. Feldman, J., Ruhl, M.: The directed Steiner network problem is tractable for a constant number of terminals. SIAM J. Comput. 36(2), 543–561 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feldman, M., Kortsarz, G., Nutov, Z.: Improved approximation algorithms for directed Steiner forest. J. Comput. Syst. Sci. 78(1), 279–292 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM 63(4), 29:1–29:60 (2016)

    Google Scholar 

  22. Frederickson, G.N., JáJá, J.: Approximation algorithms for several graph augmentation problems. SIAM J. Comput. 10(2), 270–283 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fuchs, B., Kern, W., Mölle, D., Richter, S., Rossmanith, P., Wang, X.: Dynamic programming for minimum Steiner trees. Theory Comput. Syst. 41(3), 493–500 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gabow, H.N.: A matroid approach to finding edge connectivity and packing arborescences. J. Comput. Syst. Sci. 50(2), 259–273 (1995). https://doi.org/10.1006/jcss.1995.1022

    Article  MathSciNet  MATH  Google Scholar 

  25. Goemans, M.X., Olver, N., Rothvoß, T., Zenklusen, R.: Matroids and integrality gaps for hypergraphic Steiner tree relaxations. In: Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, 19–22 May 2012, pp. 1161–1176 (2012)

    Google Scholar 

  26. Goyal, P., Misra, P., Panolan, F., Philip, G., Saurabh, S.: Finding even subgraphs even faster. J. Comput. Syst. Sci. 97, 1–13 (2018). https://doi.org/10.1016/j.jcss.2018.03.001

    Article  MathSciNet  MATH  Google Scholar 

  27. Guo, J., Niedermeier, R., Suchý, O.: Parameterized complexity of arc-weighted directed Steiner problems. SIAM J. Discrete Math. 25(2), 583–599 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

  29. Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: new tools for kernelization. J. ACM 67(3), 16:1–16:50 (2020). https://doi.org/10.1145/3390887

  30. Lam, N.X., Nguyen, T.N., An, M.K., Huynh, D.T.: Dual power assignment optimization and fault tolerance in WSNS. J. Comb. Optim. 30(1), 120–138 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Manurangsi, P., Rubinstein, A., Schramm, T.: The strongish planted clique hypothesis and its consequences. In: Lee, J.R. (ed.) 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 185, pp. 10:1–10:21. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.ITCS.2021.10

  32. Nederlof, J.: Fast polynomial-space algorithms using inclusion-exclusion. Algorithmica 65(4), 868–884 (2013). https://doi.org/10.1007/s00453-012-9630-x

    Article  MathSciNet  MATH  Google Scholar 

  33. Prömel, H.J., Steger, A.: A new approximation algorithm for the Steiner tree problem with performance ratio 5/3. J. Algorithms 36(1), 89–101 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ramanathan, R., Hain, R.: Topology control of multihop wireless networks using transmit power adjustment. In: Proceedings IEEE INFOCOM 2000, The Conference on Computer Communications, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Reaching the Promised Land of Communications, Tel Aviv, Israel, 26–30 March 2000, pp. 404–413 (2000)

    Google Scholar 

  35. Vetta, A.: Approximating the minimum strongly connected subgraph via a matching lower bound. In: Proceedings of the Twelfth Annual Symposium on Discrete Algorithms, 7–9 January 2001, Washington, DC, USA, pp. 417–426 (2001)

    Google Scholar 

  36. Wang, C., Park, M.A., Willson, J., Cheng, Y., Farago, A., Wu, W.: On approximate optimal dual power assignment for biconnectivity and edge-biconnectivity. Theor. Comput. Sci. 396(1–3), 180–190 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zelikovsky, A.: An 11/6-approximation algorithm for the network Steiner problem. Algorithmica 9(5), 463–470 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahad Panolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lokshtanov, D., Misra, P., Panolan, F., Saurabh, S., Zehavi, M. (2023). An ETH-Tight Algorithm for Bidirected Steiner Connectivity. In: Morin, P., Suri, S. (eds) Algorithms and Data Structures. WADS 2023. Lecture Notes in Computer Science, vol 14079. Springer, Cham. https://doi.org/10.1007/978-3-031-38906-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38906-1_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38905-4

  • Online ISBN: 978-3-031-38906-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics