Abstract
In the open online dial-a-ride problem, a single server has to deliver transportation requests appearing over time in some metric space, subject to minimizing the completion time. We improve on the best known upper bounds on the competitive ratio on general metric spaces and on the half-line, for both the preemptive and non-preemptive version of the problem. We achieve this by revisiting the algorithm \(\textsc {Lazy}\) recently suggested in [WAOA, 2022] and giving an improved and tight analysis. More precisely, we show that it has competitive ratio 2.457 on general metric spaces and 2.366 on the half-line. This is the first upper bound that beats known lower bounds of 2.5 for schedule-based algorithms as well as the natural \(\textsc {Replan}\) algorithm.
Supported by DFG grant DI 2041/2.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ascheuer, N., Krumke, S.O., Rambau, J.: Online dial-a-ride problems: minimizing the completion time. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 639–650. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46541-3_53
Ausiello, G., Demange, M., Laura, L., Paschos, V.: Algorithms for the on-line quota traveling salesman problem. Inf. Process. Lett. 92(2), 89–94 (2004). https://doi.org/10.1007/978-3-540-27798-9_32
Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., Talamo, M.: Algorithms for the on-line travelling salesman. Algorithmica 29(4), 560–581 (2001)
Ausiello, G., Allulli, L., Bonifaci, V., Laura, L.: On-line algorithms, real time, the virtue of laziness, and the power of clairvoyance. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 1–20. Springer, Heidelberg (2006). https://doi.org/10.1007/11750321_1
Baligács, J., Disser, Y., Mosis, N., Weckbecker, D.: An improved algorithm for open online dial-a-ride. In: Chalermsook, P., Laekhanukit, B. (eds.) WAOA 2022. Lecture Notes in Computer Science, vol. 13538, pp. 154–171. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18367-6_8
Bienkowski, M., Kraska, A., Liu, H.: Traveling repairperson, unrelated machines, and other stories about average completion times. In: Proceedings of the 48th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 28:1–28:20 (2021)
Bienkowski, M., Liu, H.: An improved online algorithm for the traveling repairperson problem on a line. In: Proceedings of the 44th International Symposium on Mathematical Foundations of Computer Science (MFCS), pp. 6:1–6:12 (2019)
Birx, A.: Competitive analysis of the online dial-a-ride problem. Ph.D. thesis, TU Darmstadt (2020)
Birx, A., Disser, Y.: Tight analysis of the smartstart algorithm for online dial-a-ride on the line. SIAM J. Discrete Math. 34(2), 1409–1443 (2020)
Birx, A., Disser, Y., Schewior, K.: Improved bounds for open online dial-a-ride on the line. Algorithmica 85(5), 1372–1414 (2022)
Bjelde, A., et al.: Tight bounds for online TSP on the line. ACM Trans. Algorithms 17(1), 1–58 (2020)
Blom, M., Krumke, S.O., de Paepe, W.E., Stougie, L.: The online TSP against fair adversaries. INFORMS J. Comput. 13(2), 138–148 (2001)
Bonifaci, V., Stougie, L.: Online \(k\)-server routing problems. Theory Comput. Syst. 45(3), 470–485 (2008)
Feuerstein, E., Stougie, L.: On-line single-server dial-a-ride problems. Theor. Comput. Sci. 268(1), 91–105 (2001)
Hauptmeier, D., Krumke, S., Rambau, J., Wirth, H.C.: Euler is standing in line dial-a-ride problems with precedence-constraints. Discrete Appl. Math. 113(1), 87–107 (2001)
Hauptmeier, D., Krumke, S.O., Rambau, J.: The online dial-a-ride problem under reasonable load. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 125–136. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46521-9_11
Jaillet, P., Lu, X.: Online traveling salesman problems with service flexibility. Networks 58(2), 137–146 (2011)
Jaillet, P., Lu, X.: Online traveling salesman problems with rejection options. Networks 64(2), 84–95 (2014)
Jaillet, P., Wagner, M.R.: Generalized online routing: new competitive ratios, resource augmentation, and asymptotic analyses. Oper. Res. 56(3), 745–757 (2008)
Jawgal, V.A., Muralidhara, V.N., Srinivasan, P.S.: Online travelling salesman problem on a circle. In: Gopal, T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 325–336. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14812-6_20
Krumke, S.O.: Online optimization competitive analysis and beyond. Habilitation thesis, Zuse Institute Berlin (2001)
Krumke, S.O., et al.: Non-abusiveness helps: An O(1)-competitive algorithm for minimizing the maximum flow time in the online traveling salesman problem. In: Jansen, K., Leonardi, S., Vazirani, V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 200–214. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45753-4_18
Krumke, S.O., de Paepe, W.E., Poensgen, D., Lipmann, M., Marchetti-Spaccamela, A., Stougie, L.: On minimizing the maximum flow time in the online dial-a-ride problem. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 258–269. Springer, Heidelberg (2006). https://doi.org/10.1007/11671411_20
Krumke, S.O., de Paepe, W.E., Poensgen, D., Stougie, L.: News from the online traveling repairman. Theor. Comput. Sci. 295(1–3), 279–294 (2003)
Lipmann, M.: On-line routing. Ph.D. thesis, Technische Universiteit Eindhoven (2003)
Lipmann, M., Lu, X., de Paepe, W.E., Sitters, R.A., Stougie, L.: On-line dial-a-ride problems under a restricted information model. Algorithmica 40(4), 319–329 (2004)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
A Factor-Revealing Approach for the Half-Line
A Factor-Revealing Approach for the Half-Line
We show how to use the factor revealing approach from Sect. 3 for the dial-a-ride problem on the half-line. Consider the following variables (recall that \(k\in \mathbb {N}\) is the number of schedules started by \(\textsc {Lazy}(\alpha )\)).
-
\(t_1 = t^{(k-1)}\), the start time of the second to last schedule
-
\(t_2 = r^{(k)}\), the start time of the last schedule
-
\(s_1 = |S^{(k-1)}|\), the duration of the second to last schedule
-
\(s_2 = |S^{(k)}|\), the duration of the last schedule
-
\(\textsc {Opt}_1 = \textsc {Opt}(t^{(k-1)})\), duration of the optimal tour serving requests released until \(t^{(k-1)}\)
-
\(\textsc {Opt}_2 = \textsc {Opt}(t^{(k)})\), duration of the optimal tour
-
\(p_1 = p^{(k)}\), the position where \(\textsc {Lazy}(\alpha )\) ends the second to last schedule
-
\(p_2 = a^{(k)}_{f,\textsc {Opt}}\), the position of the first request in \(R^{(k)}\) picked up first by the optimal tour
-
\(s_2^a = |S(R^{(k)},a^{(k)}_{f,\textsc {Opt}})|\), duration of the schedule serving \(R^{(k)}\) starting in \(p_2\)
-
\(d = d(p^{(k)},a^{(k)}_{f,\textsc {Opt}})\), the distance between \(p_1\) and \(p_2\)
With these variables
we can create the following valid optimization problem.
Note that in (29) and (30), at least one of the two inequalities has to be satisfied in each case. In order to obtain an MILP, one can introduce four binary variables \(b_1,\dots ,b_4\) to model constraints (22), (23), (29), and (30).
With \(M>0\) being a large enough constant, equality (22) can be replaced by the inequalities
Equality (23) can be replaced by the inequalities
Constraint (29) can be replaced by the inequalities
and, likewise, (30) by the inequalities
The resulting MILP has the optimal solution
and optimal value \(\max \{3+\frac{1}{\alpha }-\alpha ,1+\alpha \}\). For \(\alpha =\frac{1+\sqrt{3}}{2}>1.366\), this expression is minimized.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Baligács, J., Disser, Y., Soheil, F., Weckbecker, D. (2023). Tight Analysis of the Lazy Algorithm for Open Online Dial-a-Ride. In: Morin, P., Suri, S. (eds) Algorithms and Data Structures. WADS 2023. Lecture Notes in Computer Science, vol 14079. Springer, Cham. https://doi.org/10.1007/978-3-031-38906-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-38906-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-38905-4
Online ISBN: 978-3-031-38906-1
eBook Packages: Computer ScienceComputer Science (R0)