Skip to main content

Facilitating Enterprise Model Classification via Embedding Symbolic Knowledge into Neural Network Models

  • Conference paper
  • First Online:
Deep Learning Theory and Applications (DeLTA 2023)

Abstract

In many real life applications, the volume of available data is insufficient for training deep neural networks. One of the approaches to overcome this obstacle is to introduce symbolic knowledge to assist machine-learning models based on neural networks. In this paper, the problem of enterprise model classification by neural networks is considered to study the potential of the approach mentioned above. A number of experiments are conducted to analyze what level of accuracy can be achieved, how much training data is required and how long the training process takes, when the neural network-based model is trained without symbolic knowledge vs. when different architectures of embedding symbolic knowledge into neural networks are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. d’Avila Garcez, A., Lamb, L.C.: Neurosymbolic AI: The 3rd Wave (2020)

    Google Scholar 

  2. Borozanov, V., Hacks, S., Silva, N.: Using machine learning techniques for evaluating the similarity of enterprise architecture models. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 563–578. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2_35

    Chapter  Google Scholar 

  3. Shilov, N., Othman, W., Fellmann, M., Sandkuhl, K.: Machine learning-based enterprise modeling assistance: approach and potentials. In: Serral, E., Stirna, J., Ralyté, J., Grabis, J. (eds.) PoEM 2021. LNBIP, vol. 432, pp. 19–33. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91279-6_2

    Chapter  Google Scholar 

  4. Shilov, N., Othman, W., Fellmann, M., Sandkuhl, K.: Machine learning for enterprise modeling assistance: an investigation of the potential and proof of concept. Softw. Syst. Model. 22, 619–646 (2023). https://doi.org/10.1007/s10270-022-01077-y

    Article  Google Scholar 

  5. Ultsch, A.: The integration of neural networks with symbolic knowledge processing. In: New Approaches in Classification and Data Analysis, pp 445–454 (1994)

    Google Scholar 

  6. Guest, O., Martin, A.E.: On logical inference over brains, behaviour, and artificial neural networks. Comput. Brain Behav. 6, 213–227 (2023). https://doi.org/10.1007/s42113-022-00166-x

    Article  Google Scholar 

  7. Picco, G., Lam, H.T., Sbodio, M.L., Garcia, V.L.: Neural unification for logic reasoning over natural language (2021)

    Google Scholar 

  8. Prabhushankar, M., AlRegib, G.: Introspective learning : a two-stage approach for inference in neural networks (2022)

    Google Scholar 

  9. Mishra, N., Samuel, J.M.: Towards integrating data mining with knowledge-based system for diagnosis of human eye diseases. In: Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning. IGI Global, pp 470–485 (2021)

    Google Scholar 

  10. Wermter, S., Sun, R.: An overview of hybrid neural systems. In: Wermter, S., Sun, R. (eds.) Hybrid Neural Systems 1998. LNCS (LNAI), vol. 1778, pp. 1–13. Springer, Heidelberg (2000). https://doi.org/10.1007/10719871_1

    Chapter  Google Scholar 

  11. Pitz, D.W., Shavlik, J.W.: Dynamically adding symbolically meaningful nodes to knowledge-based neural networks. Knowl. Based Syst. 8, 301–311 (1995). https://doi.org/10.1016/0950-7051(96)81915-0

    Article  Google Scholar 

  12. Arabshahi, F., Singh, S., Anandkumar, A.: Combining symbolic expressions and black-box function evaluations in neural programs (2018)

    Google Scholar 

  13. Xie, Y., Xu, Z., Kankanhalli, M.S., et al.: Embedding symbolic knowledge into deep networks. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  14. Hu, Z., Ma, X., Liu, Z., et al.: Harnessing deep neural networks with logic rules (2016)

    Google Scholar 

  15. Prem, E., Mackinger, M., Dorffner, G., Porenta, G., Sochor, H.: Concept support as a method for programming neural networks with symbolic knowledge. In: Jürgen Ohlbach, H. (ed.) GWAI 1992. LNCS, vol. 671, pp. 166–175. Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0019002

    Chapter  Google Scholar 

  16. Shavlik, J.W.: Combining symbolic and neural learning. Mach. Learn. 14, 321–331 (1994). https://doi.org/10.1007/BF00993982

    Article  Google Scholar 

  17. Li, Y., Ouyang, S., Zhang, Y.: Combining deep learning and ontology reasoning for remote sensing image semantic segmentation. Knowl. Based Syst. 243, 108469 (2022). https://doi.org/10.1016/j.knosys.2022.108469

    Article  Google Scholar 

  18. Dash, T., Srinivasan, A., Vig, L.: Incorporating symbolic domain knowledge into graph neural networks. Mach. Learn. 110(7), 1609–1636 (2021). https://doi.org/10.1007/s10994-021-05966-z

    Article  MathSciNet  MATH  Google Scholar 

  19. Breen, C., Khan, L., Ponnusamy, A.: Image classification using neural networks and ontologies. In: Proceedings. 13th International Workshop on Database and Expert Systems Applications, pp. 98–102. IEEE (2002)

    Google Scholar 

  20. Xu, J., Zhang, Z., Friedman, T., et al.: A semantic loss function for deep learning with symbolic knowledge. Proc. Mach. Learn. Res. 80, 5502–5511 (2018)

    Google Scholar 

  21. Yang, Z., Ishay, A., Lee, J.: NeurASP: embracing neural networks into answer set programming. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization, California, pp. 1755–1762 (2020)

    Google Scholar 

  22. d’Avila, G.A.S., Gabbay, D.M., Ray, O., Woods, J.: Abductive reasoning in neural-symbolic systems. Topoi 26, 37–49 (2007). https://doi.org/10.1007/s11245-006-9005-5

    Article  MathSciNet  MATH  Google Scholar 

  23. Lai, P., Phan, N., Hu, H., et al.: Ontology-based interpretable machine learning for textual data. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–10. IEEE (2020)

    Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)

    Google Scholar 

Download references

Acknowledgements

The research is funded by the Russian Science Foundation (project 22-11-00214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Shilov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smirnov, A., Shilov, N., Ponomarev, A. (2023). Facilitating Enterprise Model Classification via Embedding Symbolic Knowledge into Neural Network Models. In: Conte, D., Fred, A., Gusikhin, O., Sansone, C. (eds) Deep Learning Theory and Applications. DeLTA 2023. Communications in Computer and Information Science, vol 1875. Springer, Cham. https://doi.org/10.1007/978-3-031-39059-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39059-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39058-6

  • Online ISBN: 978-3-031-39059-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics