Skip to main content

An Explainable Approach for Early Parkinson Disease Detection Using Deep Learning

  • Conference paper
  • First Online:
Deep Learning Theory and Applications (DeLTA 2023)

Abstract

Parkinson’s disease (PD) is a progressive disorder that affects the nervous system and all the parts of the body controlled by it. It is the second most diffused neurodegenerative disorder, showing increasing trends in the last years and requiring new tools and procedures for diagnosis and assessment. In order to be used in medical clinics, the PD detection approaches require high effectiveness in disease detection and good capability to drive the experts in the comprehension and checking of the prediction’s reasons. According to this, this paper proposes an explainable Deep Learning approach for the detection of PD from single photon emission computed tomography (SPECT) images. The approach consists of a combination of a CNN prediction model and a Gradient weighted Class Activation Mapping (Grad-CAM) interpretable technique. The validation is performed on a known dataset belonging to Parkinson’s Progression Markers Initiative (PPMI). For this dataset, SPECT images of 974 patients are used showing good accuracy in the classification of healthy and PD patients and a good capability to explain the obtained prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.ppmi-info.org.

  2. 2.

    https://autonomio.github.io/talos.

References

  1. Adams, M.P., Rahmim, A., Tang, J.: Improved motor outcome prediction in Parkinson’s disease applying deep learning to DaTscan SPECT images. Comput. Biol. Med. 132, 104312 (2021)

    Article  Google Scholar 

  2. Aversano, L., et al.: Thyroid disease treatment prediction with machine learning approaches. Procedia Comput. Sci. 192, 1031–1040 (2021). https://doi.org/10.1016/j.procs.2021.08.106, https://www.sciencedirect.com/science/article/pii/S1877050921015945. knowledge-Based and Intelligent Information and Engineering Systems: International Conference KES2021

  3. Aversano, L., Bernardi, M.L., Cimitile, M., Iammarino, M., Montano, D., Verdone, C.: Using machine learning for early prediction of heart disease. In: 2022 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS), pp. 1–8. IEEE (2022)

    Google Scholar 

  4. Aversano, L., Bernardi, M.L., Cimitile, M., Iammarino, M., Verdone, C.: An enhanced UNet variant for effective lung cancer detection. In: 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2022)

    Google Scholar 

  5. Aversano, L., Bernardi, M.L., Cimitile, M., Pecori, R.: Early detection of Parkinson disease using deep neural networks on gait dynamics. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

    Google Scholar 

  6. Aversano, L., Bernardi, M.L., Cimitile, M., Pecori, R.: Fuzzy neural networks to detect Parkinson disease. In: 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2020)

    Google Scholar 

  7. Aversano, L., Bernardi, M.L., Cimitile, M., Pecori, R.: Deep neural networks ensemble to detect COVID-19 from CT scans. Pattern Recogn. 120, 108135 (2021)

    Article  Google Scholar 

  8. Badoud, S., Van De Ville, D., Nicastro, N., Garibotto, V., Burkhard, P.R., Haller, S.: Discriminating among degenerative Parkinsonisms using advanced 123i-ioflupane SPECT analyses. NeuroImage: Clin. 12, 234–240 (2016)

    Article  Google Scholar 

  9. Banerjee, P., Banerjee, S., Barnwal, R.P.: Explaining deep-learning models using gradient-based localization for reliable tea-leaves classifications. In: 2022 IEEE Fourth International Conference on Advances in Electronics, Computers and Communications (ICAECC), pp. 1–6 (2022). https://doi.org/10.1109/ICAECC54045.2022.9716699

  10. Benamer, H.T., et al.: Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123i]-FP-CIT SPECT imaging: the [123i]-FP-CIT study group. Mov. Disord. Official J. Mov. Disord. Soc. 15, 503–510(2000)

    Google Scholar 

  11. Brown, E., et al.: Parkinson’s progression markers initiative (PPMI) online expands biomarker research in Parkinson’s disease (PD). Neurology, 98 (2022)

    Google Scholar 

  12. Castillo-Barnes, D., Ramírez, J., Segovia, F., Martínez-Murcia, F.J., Salas-Gonzalez, D., Górriz, J.M.: Robust ensemble classification methodology for i123-ioflupane SPECT images and multiple heterogeneous biomarkers in the diagnosis of Parkinson’s disease. Front. Neuroinform. 12, 53 (2018)

    Article  Google Scholar 

  13. Choi, H., Ha, S., Im, H.J., Paek, S.H., Lee, D.S.: Refining diagnosis of Parkinson’s disease with deep learning-based interpretation of dopamine transporter imaging. NeuroImage: Clin. 16, 586–594 (2017). https://doi.org/10.1016/j.nicl.2017.09.010, https://www.sciencedirect.com/science/article/pii/S2213158217302243

  14. Du, G., Zhuang, P., Hallett, M., Zhang, Y.Q., Li, J.Y., Li, Y.J.: Properties of oscillatory neuronal activity in the basal ganglia and thalamus in patients with Parkinson’s disease. Transl. Neurodegener. 7(1), 17 (2018). https://doi.org/10.1186/s40035-018-0123-y

    Article  Google Scholar 

  15. Siva Shankar, G., Manikandan, K.: Diagnosis of diabetes diseases using optimized fuzzy rule set by grey wolf optimization. Pattern Recogn. Lett. 125, 432–438 (2019). https://doi.org/10.1016/j.patrec.2019.06.005, http://www.sciencedirect.com/science/article/pii/S0167865519301734

  16. Górski, L., Ramakrishna, S., Nowosielski, J.M.: Towards grad-cam based explainability in a legal text processing pipeline. CoRR abs/2012.09603 (2020). https://arxiv.org/abs/2012.09603

  17. Iarkov, A., Barreto, G.E., Grizzell, J.A., Echeverria, V.: Strategies for the treatment of Parkinson’s disease: beyond dopamine. Front. Aging Neurosci. 12, 4 (2020)

    Article  Google Scholar 

  18. Karayilan, T., Kilic, O.: Prediction of heart disease using neural network. In: 2017 International Conference on Computer Science and Engineering (UBMK), pp. 719–723 (2017). https://doi.org/10.1109/UBMK.2017.8093512

  19. Khachnaoui, H., Mabrouk, R., Khlifa, N.: Machine learning and deep learning for clinical data and PET/SPECT imaging in Parkinson’s disease: a review. IET Image Process. 14(16), 4013–4026 (2020). https://doi.org/10.1049/iet-ipr.2020.1048, https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-ipr.2020.1048

  20. Lundervold, A.S., Lundervold, A.: An overview of deep learning in medical imaging focusing on mri. Zeitschrift für Medizinische Physik 29(2), 102–127 (2019). https://doi.org/10.1016/j.zemedi.2018.11.002, https://www.sciencedirect.com/science/article/pii/S0939388918301181, special Issue: Deep Learning in Medical Physics

  21. Nazari, M., et al.: Data-driven identification of diagnostically useful extrastriatal signal in dopamine transporter SPECT using explainable AI. Sci. Rep. 11(1), 22932 (2021). https://doi.org/10.1038/s41598-021-02385-x, https://doi.org/10.1038/s41598-021-02385-x

  22. Nazari, M., et al.: Explainable AI to improve acceptance of convolutional neural networks for automatic classification of dopamine transporter SPECT in the diagnosis of clinically uncertain Parkinsonian syndromes. Eur. J. Nucl. Med. Mol. Imaging 49(4), 1176–1186 (2022). https://doi.org/10.1007/s00259-021-05569-9

    Article  Google Scholar 

  23. Oliveira, F.P., Faria, D.B., Costa, D.C., Castelo-Branco, M., Tavares, J.M.R.: Extraction, selection and comparison of features for an effective automated computer-aided diagnosis of Parkinson’s disease based on [123i] FP-CIT SPECT images. Eur. J. Nucl. Med. Mol. Imaging 45(6), 1052–1062 (2018)

    Article  Google Scholar 

  24. Ortiz, A., Munilla, J., Martínez-Ibañez, M., Górriz, J.M., Ramírez, J., Salas-Gonzalez, D.: Parkinson’s disease detection using isosurfaces-based features and convolutional neural networks. Front. Neuroinform. 13, 48 (2019). https://doi.org/10.3389/fninf.2019.00048, https://www.frontiersin.org/articles/10.3389/fninf.2019.00048

  25. Poewe, W., et al.: Parkinson disease. Nat. Rev. Dis. Primers 3(1), 17013 (2017). https://doi.org/10.1038/nrdp.2017.13

    Article  Google Scholar 

  26. Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. 2016. arXiv preprint arXiv:1610.02391 (2016)

  27. Staffen, W., Mair, A., Unterrainer, J., Trinka, E., Ladurner, G.: Measuring the progression of idiopathic Parkinson’s disease with [123i] \(beta\)-CIT SPECT. J. Neural Transm. 107(5), 543–552 (2000)

    Article  Google Scholar 

  28. Valizadeh, M., Wolff, S.J.: Convolutional neural network applications in additive manufacturing: a review. Adv. Ind. Manuf. Eng. 4, 100072 (2022). https://doi.org/10.1016/j.aime.2022.100072, https://www.sciencedirect.com/science/article/pii/S2666912922000046

  29. Vilone, G., Longo, L.: Notions of explainability and evaluation approaches for explainable artificial intelligence. Inf. Fusion 76, 89–106 (2021). https://doi.org/10.1016/j.inffus.2021.05.009, https://www.sciencedirect.com/science/article/pii/S1566253521001093

  30. Vuppala, S.K., Behera, M., Jack, H., Bussa, N.: Explainable deep learning methods for medical imaging applications. In: 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), pp. 334–339 (2020). https://doi.org/10.1109/ICCCA49541.2020.9250820

  31. Wenzel, M., et al.: Automatic classification of dopamine transporter SPECT: deep convolutional neural networks can be trained to be robust with respect to variable image characteristics. Eur. J. Nucl. Med. Mol. Imaging 46(13), 2800–2811 (2019)

    Article  Google Scholar 

  32. Yamashita, R., Nishio, M., Do, R.K.G., Togashi, K.: Convolutional neural networks: an overview and application in radiology. Insights Imaging 9(4), 611–629 (2018). https://doi.org/10.1007/s13244-018-0639-9

    Article  Google Scholar 

  33. Zhang, Y.C., Kagen, A.C.: Machine learning interface for medical image analysis. J. Digit. Imaging 30(5), 615–621 (2017)

    Article  Google Scholar 

  34. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.319, https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.319

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lerina Aversano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aversano, L., Bernardi, M.L., Cimitile, M., Iammarino, M., Madau, A., Verdone, C. (2023). An Explainable Approach for Early Parkinson Disease Detection Using Deep Learning. In: Conte, D., Fred, A., Gusikhin, O., Sansone, C. (eds) Deep Learning Theory and Applications. DeLTA 2023. Communications in Computer and Information Science, vol 1875. Springer, Cham. https://doi.org/10.1007/978-3-031-39059-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39059-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39058-6

  • Online ISBN: 978-3-031-39059-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics