Skip to main content

Generative Adversarial Networks for Domain Translation in Unpaired Breast DCE-MRI Datasets

  • Conference paper
  • First Online:
Deep Learning Theory and Applications (DeLTA 2023)

Abstract

Generative Adversarial Networks (GAN) are more and more gaining attention in the computer vision domain thanks to their ability to generate synthetic data, in particular in the context of domain adaptation and image-to-image translation. These properties are attracting the medical community too, in order to solve some complex biomedical challenges, such as the translation between different medical imaging acquisition protocols. Indeed, as the actual acquisition protocol is strongly dependent on factors such as the operator, the aim, the centre, etc., gathering cohorts of patients all sharing the same typology of imaging is an open challenge. In this paper, we propose to face this problem by using a GAN to realise a domain translation architecture in the case of breast Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI), considering two different acquisition protocols, in the context of automatic lesion classification. Despite this work wanting to be a first step toward artificial data generation in the medical domain, the obtained results have been analysed from both a quantitative and qualitative point of view, in order to evaluate the correctness and quality of the proposed architecture as well as its usability in a clinical scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, N., Chen, H., Li, Y., Peng, Y., Guo, L.: Registration on DCE-MRI images via multi-domain image-to-image translation. Comput. Med. Imaging Graph. 104, 102169 (2023)

    Article  Google Scholar 

  2. Desai, S.D., Giraddi, S., Verma, N., Gupta, P., Ramya, S.: Breast cancer detection using gan for limited labeled dataset. In: 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN), pp. 34–39. IEEE (2020)

    Google Scholar 

  3. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  4. Gravina, M., et al.: Leveraging CycleGAN in lung CT Sinogram-free kernel conversion. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds.) ICIAP 2022 Part I. LNCS, vol. 13231, pp. 100–110. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06427-2_9

    Chapter  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv (2018). https://arxiv.org/abs/1611.07004

  7. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  8. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)

    Google Scholar 

  9. Modanwal, G., Vellal, A., Mazurowski, M.A.: Normalization of breast MRIs using cycle-consistent generative adversarial networks. arXiv (2019). https://arxiv.org/abs/1912.08061

  10. Murphy, A., Niknejad, D.M.T.: Fat suppressed imaging. https://radiopaedia.org/articles/fat-suppressed-imaging?lang=us

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Sannino, C., Gravina, M., Marrone, S., Fiameni, G., Sansone, C.: Lessonable: leveraging deep fakes in MOOC content creation. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds.) ICIAP 2022 Part I. LNCS, vol. 13231, pp. 27–37. Springer, Cham (2022)

    Chapter  Google Scholar 

  13. Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., Biancone, P.: The role of artificial intelligence in healthcare: a structured literature review. BMC Med. Inform. Decis. Mak. 21, 1–23 (2021)

    Article  Google Scholar 

  14. Shamsolmoali, P., Zareapoor, M., Granger, E., Zhou, H., Wang, R., Celebi, M.E., Yang, J.: Image synthesis with adversarial networks: a comprehensive survey and case studies. Inf. Fusion 72, 126–146 (2021)

    Article  Google Scholar 

  15. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2107–2116 (2017)

    Google Scholar 

  16. Tavse, S., Varadarajan, V., Bachute, M., Gite, S., Kotecha, K.: A systematic literature review on applications of GAN-synthesized images for brain MRI. Future Internet 14(12), 351 (2022)

    Article  Google Scholar 

  17. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  18. Wolf, S.: Cyclegan: Learning to translate images (without paired training data) (2018). https://towardsdatascience.com/cyclegan-learning-to-translate-images-without-paired-training-data-5b4e93862c8d

  19. Wolterink, J.M., Dinkla, A.M., Savenije, M.H., Seevinck, P.R., van den Berg, C.A., Isgum, I.: Deep MR to CT synthesis using unpaired data. arXiv (2017). https://arxiv.org/abs/1708.01155

  20. Xie, G., et al.: Fedmed-gan: Federated domain translation on unsupervised cross-modality brain image synthesis (2022). Available at SSRN 4342071

    Google Scholar 

  21. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  22. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv (2020). https://arxiv.org/abs/1703.10593

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Marrone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galli, A., Gravina, M., Marrone, S., Sansone, C. (2023). Generative Adversarial Networks for Domain Translation in Unpaired Breast DCE-MRI Datasets. In: Conte, D., Fred, A., Gusikhin, O., Sansone, C. (eds) Deep Learning Theory and Applications. DeLTA 2023. Communications in Computer and Information Science, vol 1875. Springer, Cham. https://doi.org/10.1007/978-3-031-39059-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39059-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39058-6

  • Online ISBN: 978-3-031-39059-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics