Abstract
Recommender systems are quickly taking over our daily lives. By suggesting and customizing the recommended items, they play a significant part in solving the information overload issue. Traditional recommender systems used for simple prediction issues include collaborative filtering, content-based filtering, and hybrid techniques. With new techniques used in recommender systems, such as reinforcement learning algorithms, more difficult problems can be resolved. These issues can be resolved using Markov decision processes and reinforcement learning techniques. It is now possible to employ reinforcement learning techniques to address issues with the huge environment and states, thanks to recent advancements in the field. The development of traditional and reinforcement learning-based methods, their appraisal, difficulties, and suggested future research will be followed by a discussion of the reinforcement learning recommender system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Klašnja-Milićević, A., Ivanović, M., Nanopoulos, A.: Recommender systems in e-learning environments: a survey of the state of the art and possible extensions. Artif. Intell. Rev. 44(4), 571–604 (2015)
Schafer, J.B., Konstan, J., Riedl, J.: Recommender systems in e-commerce. In: ACM Conference on Electronic Commerce, pp. 158–166 (1999)
Sezgin, E., Ozkan, S.: A systematic literature review on health recommender systems. In: E-Health and Bioengineering Conference (EHB), pp. 1–4. IEEE (2013)
Karimi, M., Jannach, D., Jugovac, M.: News recommender systems survey and roads ahead. Inf. Process. Manag. 54(6), 1203–1227 (2018)
Ricci, F., Rokach, L., Shapira, B.: Introduction to Recommender Systems Handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 1–35. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_1
Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a survey and new perspectives. Comput. Surv. (CSUR) 52(1), 1–38 (2019)
Jens Kober, J., Bagnell, A., Peters, J.: Reinforcement learning in robotics: a survey. J. Robot. Res. 32(11), 1238–1274 (2013)
Meyes, R., et al.: Motionplanning for industrial robots using reinforcement learning. Procedia CIRP 63, 107–112 (2017)
Navaei, M., Tabrizi, N.: Machine learning in software development life cycle: a comprehensive review. ENASE, pp. 344–354 (2022)
Sallab, A.E.L., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework autonomous driving. Electron. Imaging 2017(19), 70–76 (2017)
You, C., Jianbo, L., Filev, D., Tsiotras, P.: Advanced planning for autonomous vehicles using reinforcement learning and deep inverse reinforcement learning. Robot. Auton. Syst. 114, 118 (2019)
Jiang, Z., Xu, D., Liang, J.: A deep reinforcement learning framework for the financial portfolio management problem (2017). arXiv
Guez, A., Vincent, R.D., Avoli, M., Pineau, J.: Adaptive treatment of epilepsy via batch-mode reinforcement learning. In: AAAI, pp. 1671–1678 (2008)
Chen, M., Beutel, A., Covington, P., Jain, S., Belletti, F., Chi, E.H.: Top-k off policy correction for a reinforce recommender system. In: ACM International Conference on Web Search and Data Mining, pp. 456–464 (2019)
Smyth, B., Cotter, P.: A personalised TV listings service for the digital TV age. Knowl.-Based Syst. (2000)
Singh, S., Kearns, M., Litman, D., Walker, M.: Reinforcement learning for spoken dialogue systems. Neural Inf. Process. Syst. 956–962 (2000)
Tetreault, J., Litman, D.: Using reinforcement learning to build a better model of dialogue state. In: European Chapter of the Association for Computational Linguistics (2006)
Sutton, R.S., Bartom, A.G.: Introduction to Reinforcement Learning, vol. 2. MIT Press, Cambridge (2017)
Watkins, C.J.C.H.: Learning from delayed rewards (1989)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Image net classification with deep convolutional neural networks. Neural Inf. Process. Syst. 1097–1105 (2012)
Goldberg, D., Nichols, D., Terry, D., Oki, B.M.: Using collaborative filtering to weave an information tapestry. ACM 35(12), 61–70 (1992)
Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning (2015). arXiv
Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., Freitas, N.: Dueling network architectures for deep reinforcement learning. In International Conference on Machine Learning (2016)
Shani, G., Heckerman, D., Brafman, R.I., Boutilier, C.: An MDP based recommender system. Mach. Learn. Res. J. 6(Sep), 1265–1295 (2005)
Dulac-Arnold, G., et al.:
Joachims, T., Freitag, D., Mitchell, T.: Webwatcher: a tour guide for the world wide web. In: IJCAI (1), pp. 770–777. Citeseer (1997)
Srivihok, A., Sukonmanee, P.: Ecommerce intelligent agent: personalization travel support agent using Q learning. In: 7th International Conference on Electronic Commerce, pp. 287–292 (2005)
Taghipour, N., Kardan, A., Ghidary, S.S.: Usage based web recommendations: a reinforcement learning approach. In: ACM Conference on Recommender Systems, pp. 113–120 (2007)
Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on web usage mining. ACM 43(8), 142–151 (2000)
Thomas, P.S., Theocharous, G. Rojanavasu, P., Srinil, P., Pinngern, O.: New recommendation systemusing reinforcement learning. Spec. Issue Int. J. Comput. Internet Manag. 13(SP 3) (2005)
Intayoad, W., Kamyod, C., Temdee, P.: Reinforcement learning for online learning recommendation system. In: 2018 Global Wireless Summit (GWS), pp. 167–170. IEEE (2018)
Chi, C.Y., Tsai, R.T.H., Lai, J.Y., Hsu, J.Y.J.: A reinforcement learning approach to emotion-based automatic playlist generation. In: 2010 International Conference on Technologies and Applications of Artificial Intelligence, pp. 60–65. IEEE (2010)
Choi, S., Ha, H., Hwang, U., Kim, C., Ha, J.W., Yoon, S.: Reinforcement learning based recommender system using biclustering technique (2018). arXiv preprint arXiv:1801.05532
Prelic, A., et al.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9), 1122–1129 (2006)
Rodriguez-Baena, D.S., Perez-Pulido, A.J., Aguilar-Ruiz, J.S.: A biclustering algorithm for extracting bit-patterns from binary datasets. Bioinformatics 27(19), 2738–2745 (2011)
Bohnenberger, T., Jameson, A.: When policies are better than plans: decision theoretic planning of recommendation sequences. In: International Conference on Intelligent User Interfaces, pp. 21–24 (2001)
Liebman, E., Saar-Tsechansky, M., Stone, P.: Dj-mc: a reinforcement earning agent for music playlist recommendation (2014). arXiv
Qi, F., Tong, X., Yu, L., Wang, Y.: Personalized project recommendations: using reinforcement learning. EURASIP J. Wirel. Commun. Netw. 2019(1), 1–17 (2019). https://doi.org/10.1186/s13638-019-1619-6
Wang, Y.: A hybrid recommendation for music based on reinforcement learning. In: Lauw, H., Wong, R.W., Ntoulas, A., Lim, E.P., Ng, S.K., Pan, S. (eds.) Advances in Knowledge Discovery and Data Mining. PAKDD 2020. LNCS, vol. 12084, pp. 91–103. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47426-3_8
Zou, L., Xia, L., Ding, Z., Yin, D., Song, J., Liu, W.: Reinforcement learning to diversify Top-N recommendation. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) Database Systems for Advanced Applications. DASFAA 2019. LNCS, vol. 11447, pp. 104–120. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18579-4_7
Zhao, Y., Zeng, D., Socinski, M.A., Kosorok, M.R.: Reinforcement learning strategies forclinical trials in nonsmall cell lung cancer (2011)
Shortreed, S.M., Laber, E., Lizotte, D.J., Scott Stroup, T., Pineau, J., Murphy, S.A.: Informing sequential clinical decision making through reinforcement learning: an empirical study. Mach. Learn. 84(1–2), 109–136 (2011)
Theocharous, G., Thomas, P.S., Ghavamzadeh, M.: Personalized ad recommendation systems for lifetime value optimization with guarantees. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer science & business media (2013)
Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data, vol. 793. John Wiley, Hoboken (2019)
Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learning. J. Mach. Learn. Res. 6(Apr), 503–56 (2005)
Sunehag, P., Evans, R., Dulac-Arnold, G., Zwols, Y., Visentin, D., Coppin, B.: Deep reinforcement learning with attention for slate Markov decision processes with high dimensional states and actions (2015). arXiv preprint arXiv:1512.01124
Ie, E., et al.: Reinforcement learning for slate-based recommender systems: a tractable decomposition and practical methodology (2019). arXiv preprint arXiv:1905.12767
Nemati, S., Ghassemi, M.M., Clifford, G.D.: Optimal medication dosing fromsuboptimal clinical examples: a deep reinforcementlearning approach. Eng. Med. Biol. Soc. 2978–2981. IEEE (2016)
Raghu, A., Komorowski, M., Ahmed, I., Celi, L., Szolovits, P., Ghassemi, M.: Deep reinforcement learning for sepsis treatment (2017). arXiv preprint arXiv:1711.09602
Chen, X., Li, S., Li, H., Jiang, S., Qi, Y., Song, L.: Generative adversarial user model for reinforcement learning based recommendation system. In: International Conference on Machine Learning, pp. 1052–1061 (2019)
Chen, S.Y., Yu, Y., Da, Q., Tan, J., Huang, H.K., Tang, H.H.: Stabilizing reinforcement learning in dynamic environment with application to online recommendation. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2018)
Yuyan, Z., Xiayao, S., Yong, L.: A novel movie recommendation system based on deep reinforcement learning with prioritized experience replay. In: 2019 IEEE 19th International Conference on Communication Technology (ICCT), pp. 1496–1500. IEEE (2019)
Zhao, X., Xia, L., Yin, D., Tang, J.: Model-based reinforcement learning for wholechain recommendations (2019). arXiv preprint arXiv:1902.03987
Casanueva, I., et al.: Deep reinforcement learning for recommender systems. In: 2018 International Conference on Information and Communications Technology (icoiact), pp. 226–233. IEEE (2018)
Hinton, G.E., Sabour, S., Frosst, N.: Matrix capsules with EM routing. In: International Conference on Learning Representations (2018)
Zhao, C., Hu, L.: CapDRL: a deep capsule reinforcement learning for movie recommendation. In: Nayak, A., Sharma, A. (eds.) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. LNCS, vol. 11672, pp. 734–739. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29894-4_59
Greco, C., Suglia, A., Basile, P., Semeraro, G.: Converse-et-impera: exploiting deep learning and hierarchical reinforcement learning for conversational recommender systems. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds.) AI*IA 2017 Advances in Artificial Intelligence. AI*IA 2017. LNCS, vol. 10640, pp. 372–386. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70169-1_28
Kulkarni, T.D., Narasimhan, K., Saeedi, A., Tenenbaum, J.: Hierarchical deep reinforcement learning: integrating temporal abstraction and intrinsic motivation. Neural Inf. Process. Syst. 3675–3683 (2016)
Liang, H.: Drprofling: deep reinforcement user pro ling for recommendations in heterogenous information networks. IEEE Knowl. Data Eng. (2020)
Liu, S., Chen, Y., Huang, H., Xiao, L., Hei, X.: Towards smart educational recommendations with reinforcement learning in classroom. In: International Conference on Teaching, Assessment, and Learning for Engineering, pp. 1079–1084. IEEE (2018)
Den Hengst, F., Hoogendoorn, M., Van Harmelen, F., Bosman, J.: Reinforcement learning for personalized dialogue management. In: International Conference on Web Intelligence (2019)
Fotopoulou, E., Zafeiropoulos, A., Feidakis, M., Metafas, D., Papavassiliou, S.: An interactive recommender system based on reinforcement learning for improving emotional competences in educational groups. In: Kumar, V., Troussas, C. (eds.) Intelligent Tutoring Systems. ITS 2020. LNCS, vol. 12149, pp. 248–258. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49663-0_29
Mahmood, T., Ricci, F.: Learning and adaptivity in interactive recommender systems. In: Conference on Electronic Commerce, pp. 75–84 (2007)
Preda, M., Popescu, D.: Personalized web recommendations: supporting epistemic information about end-users. In: The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05), pp. 692–695. IEEE (2005)
Lin, L.-J.: Self-improving reactive agents based on reinforcement learning, planning and teaching. Mach. Learn. 8(3–4), 293–321 (1992)
Thrun, S., Schwartz, A.: Issues in using function approximation for reinforcement learning. Connectionist Models Summer School Hillsdale. Lawrence Erlbaum, NJ (1993)
Yu, T., Shen, Y., Zhang, R., Zeng, X., Jin, H.: Vision-language recommendation via attribute augmented multimodal reinforcement learning. In: ACM International Conference on Multimedia, pp. 39–47 (2019)
Xian, Y., Fu, Z., Muthukrishnan, S., De Melo, G., Zhang, Y.: Reinforcement knowledge graph reasoning for explainable recommendation. In: ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 285–294 (2019)
Zhang, Y., Chen, X.: Explainable recommendation: a survey and new perspectives (2018). arXiv:1804.11192
Cosley, D., Lam, S.K., Albert, I., Konstan, J.A., Riedl, J.: Is seeing believing how recommender system interfaces a ect users’ opinions. In: Conference on Human Factors in Computing Systems, pp. 585–592 (2003)
Chen, L., Pu, P.: Trust building in recommender agents workshop on web personalization, Recommender Systems and Intelligent User Interfaces at the 2nd International Conference on E-Business, pp. 135–145. Citeseer (2005)
Tintarev, N., Mastho, J.: Exective explanations of recommendations: usercentered design. In: ACM Conference on Recommender Systems, pp. 153–156 (2007)
Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 31–57 (2018)
Wang, X., Chen, Y., Yang, J., Wu, L., Wu, Z., Xie, X.: A reinforcement learning framework for explainable recommendation. In: Conference on Data Mining, pp. 587–596. IEEE (2018)
Barto, A.G.: Reinforcement learning and dynamic programming. In: Analysis, Design and Evaluation of Man Machine Systems, pp. 407–412. Elsevier (1995)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rezaei, M., Tabrizi, N. (2023). A Survey on Reinforcement Learning and Deep Reinforcement Learning for Recommender Systems. In: Conte, D., Fred, A., Gusikhin, O., Sansone, C. (eds) Deep Learning Theory and Applications. DeLTA 2023. Communications in Computer and Information Science, vol 1875. Springer, Cham. https://doi.org/10.1007/978-3-031-39059-3_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-39059-3_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-39058-6
Online ISBN: 978-3-031-39059-3
eBook Packages: Computer ScienceComputer Science (R0)