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Abstract

Support vector machines (SVMs) are a standard method in the machine learning tool-
box, in particular for tabular data. Non-linear kernel SVMs often deliver highly accurate
predictors, however, at the cost of long training times. That problem is aggravated by the ex-
ponential growth of data volumes over time. It was tackled in the past mainly by two types
of techniques: approximate solvers, and parallel GPU implementations. In this work, we
combine both approaches to design an extremely fast dual SVM solver. We fully exploit the
capabilities of modern compute servers: many-core architectures, multiple high-end GPUs,
and large random access memory. On such a machine, we train a large-margin classifier on
the ImageNet data set in 24 minutes.

1 Introduction

In this paper we pick up a classic learning algorithm, the support vector machine (SVM). Despite
the impressive successes of deep learning in particular in the areas of image and language pro-
cessing, there are still many applications in which the data does not obey a spatial or temporal
structure. Sometimes, data comes as a large table of unstructured features. This is where clas-
sic methods like ensembles and large margin classifiers shine. Such problems show up regularly
in many application domains like material science, medicine, bioinformatics, and many more
[3, 14, 16].

One of the arguably most successful methods for processing tabular data is the support vector
machine (SVM) [5]. From a modern perspective, it is limited by one out of two factors. In its
linear form, training is fast, but models are limited to linear combinations of features, which
often precludes accurate predictors. In its non-linear or kernelized form, high accuracy can be
achieved at the price of long training times, which scale roughly quadratic with the number n of
data points. Since present-day data sets are orders of magnitude larger than what was common
when SVMs were developed, this is a serious limiting factor for this otherwise highly valuable
method.

The problem of long training times was a very active research topic for more than a decade,
with considerable progress made. The most influential SVM implementation is for sure the semi-
nal LIBSVM software [4]. It implements a variant of the sequential minimal optimization (SMO)
method, a dual subspace ascent solver [17]. It is complemented by its spin-off LIBLINEAR [10],
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a conceptually similar solver, specialized in training linear SVMs. These solvers still represent
the state-of-the-art for sequential SVM training of exact solutions on a single CPU core.

Broadly speaking, there are two types of acceleration techniques going beyond LIBSVM:
approximation schemes and parallel algorithms. Most approximations are based on the insight
that restricting the extremely rich reproducing kernel Hilbert space induced by the kernel to a
much smaller subspace often works well, in the sense that considerable computational gains can
be achieved while sacrificing only very little predictive performance [23, 19]. This is particularly
true if the subspace is picked in a data-driven manner [6, 26]. As an orthogonal development,
parallel algorithms aim to overcome the inherently sequential nature of subspace ascent, either
by employing primal (mini-batch) training [15], or by resorting to heuristics [25].

In this work, we aim to combine both approaches by designing a GPU-ready dual coordinate
ascent algorithm for approximate SVM training. To this end, we leverage a low-rank approxima-
tion technique combined with a dual linear SVM solver. We add vectorization, multi-core, and
GPU processing to the picture. We achieve considerable speed-ups by paying attention to the
memory organization of our solver. While several SVM solvers implement a kernel cache, our
low-rank technique combined with the large amount of RAM available in modern server machines
allows for a complete pre-computation of the relevant matrices. We also implement a simplistic
yet robust and effective shrinking method, as well as proper support for cross-validation and
parameter tuning using warm starts. We present an extremely fast solver suitable for large-scale
SVM training on multi-core systems with and without GPUs. In a nutshell, our contributions
are
• a GPU-ready approximate dual solver for large-scale SVM training in minutes (instead of

hours or days),
• a significantly better compute/memory trade-off through complete precomputation of a

low-rank matrix factor, and
• an robust and effective shrinking technique.
After recalling SVMs in the next section, we summarize existing speed-up techniques. Then

we present our method and its fast implementation. We demonstrate its power through an
empirical comparison with existing solvers, and finally draw our conclusions.

2 Support Vector Machines

Primal and Dual Form. An SVM constructs a decision function of the form1 f(x) 7→
〈w,φ(x)〉. It is directly suitable for regression tasks, while its sign is considered for binary
classification. Training is based on labeled data (x1, y1), . . . , (xn, yn) ∈ X × Y and a kernel
function k : X ×X → R over the input space X. The weight vector w∗ is obtained by solving
the (primal) optimization problem

min
w∈H

P (w) =
λ

2
‖w‖2 + 1

n

n
∑

i=1

ℓ
(

yi, f(xi)
)

, (1)

where λ > 0 is a regularization parameter, ℓ is a loss function (usually convex in w, turning
problem (1) into a convex problem), and φ : X → H is an only implicitly defined feature map

1The angle brackets denote the inner product in the kernel-induced feature space. We drop the bias or offset
term [22].
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into the reproducing kernel Hilbert space H, fulfilling 〈φ(x), φ(x′)〉 = k(x, x′). The representer
theorem allows to restrict the solution to the form w =

∑n
i=1 αiyiφ(xi) with coefficient vector

α ∈ R
n, yielding f(x) =

∑n
i=1 αiyik(x, xi). Training points xi with non-zero coefficients αi 6= 0

are called support vectors. For further details we refer the reader to the excellent review [1].
For the simplest case of binary classification (with Y = {±1}), the equivalent dual problem

[1] becomes

max
α∈[0,C]n

D(α) = 1

Tα− 1

2
αTQα. (2)

This is a box-constrained quadratic program, with the notations 1 = (1, . . . , 1)T , C = 1
λn

, and
Qij = yiyjk(xi, xj). Corresponding problems for regression and ranking are of a similar form.
Multi-class problems can either be cast into a larger problem of the same type [9], or they are
handled in a one-versus-one manner [4].

SVM Training. Dual decomposition solvers [4, 1] are the fastest method for training a non-
linear SVM to high precision. In each iteration, they solve a small sub-problem of constant size,
which can amount to coordinate ascent in case of problem (2). The sub-problem restricted to a
single dual variable αi (a one-dimensional quadratic program) is solved by the truncated Newton
step αi ← max

{

0,min{C,αi+
1−Qiα
Qii
}
}

, where Qi is the i-th row of Q. In the simplest case (and
in all solvers relevant to this work), the index i is chosen in a round-robin fashion, possibly in a
randomized order. In elaborate solvers like LIBSVM, considerable speed-ups can be achieved by
a technique called shrinking, which amounts to temporarily removing variables αi which remain
at the bounds 0 or C and hence do not change for a long time. This technique can reduce the
number of active variables to a small subset, in particular in the late phase of the optimization.

Most alternative solvers operate on the primal problem (1). This has advantages and disad-
vantages. On the pro side, even simplistic methods like mini-batch stochastic gradient descent
(SGD) [20] can add parallelism in the sense that multiple data points can enter an update step.
This is exploited by the Eigen-Pro solver [15]. On the con side, convergence is slow (although
finite-sum acceleration techniques are applicable in some cases [11]), while dual solvers enjoy lin-
ear convergence [13]. Therefore, primal solvers find rough approximate solutions quickly, while
dual methods are the method of choice when the large margin principle is taken serious, which
requires a rather precise solution.

In any case, the iteration complexity is governed by the computation of f(x) (or equivalently,
by the computation of a partial derivative of an update of the dual gradient), which is linear in the
number of non-zero coefficients αi. Typically, for each non-zero coefficient, a kernel computation
of cost O(p) is required, where p is the dimension of the input space X ⊂ R

p, or the average
number of non-zeros for sparse data. The resulting complexity of O(np) is a limiting factor for
large-scale data, since the number of support vectors grows linearly with n [21]. In contrast, for
linear SVM solvers, the iteration complexity is simply O(p), which is smaller by a factor of n
(often in the order of 105 or more).

3 Speed-up Techniques

Budgeted and Low-Rank Solvers. The iteration complexity of most primal as well as
dual solvers is tightly coupled to the number of non-zero summands in the weight vector w =
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∑n
i=1 αiyiφ(xi). Most approximate solvers significantly reduce the number of terms in one way or

another. For a dataset with n = 106 points, a typical subspace is of dimension B = 103, where B

can be the budget or another parameter controlling the effective feature space dimension. Such
a reduction can be interpreted as or even constructed through a low-rank approximation of the
kernel matrix Q.

A low-rank method works well if and only if the optimal weight vector w∗ is well preserved
by the projection to the low-dimensional subspace, in the metric induced by Q. The fact that
low-rank approximations aim to preserve the eigenspaces corresponding to large eigenvalues of Q
explains why and when such approximations work well, namely when the spectrum of Q decays
sufficiently quickly. For kernel-induced Gram matrices, this is usually the case, see [2, 15] and
references therein.

Random Fourier Features [19] and related approaches approximate the most prominent direc-
tions of the kernel feature space H. However, they can be inefficient since the approximation is
performed a priori, i.e., without considering the data. NystrÃ¶m sampling methods [26] address
this issue by constructing a data-dependent subspace. In practice, this often amounts to simply
reducing the available basis functions φ(xi) to a small random subset of the training points {xi}.
Budget methods go even further by making the subspace adaptive during training [6, 24]. This
can be beneficial since in the end only a single direction needs to be represented in the feature
space, namely the optimal weight vector w∗, which is however known (approximately) only in
a late phase of the training process. Budget methods can be very efficient [18], but they are
hard to parallelize due to their budget maintenance strategy, which usually amounts to merging
support vectors [24].

Many different training schemes were designed along these lines. We can generally differenti-
ate between two-stage methods in which the construction of the feature space and the training
procedure are separated, and single-stage methods in which the two tasks are performed simulta-
neously. This distinction is generally useful, although it ignores a few variants like lazy learning
schemes [12]. Generally speaking, two-stage methods like LLSVM [27] put considerable effort
into constructing a suitable subspace and precomputing the projection of the feature vectors into
that subspace. This has the advantage that the second stage reduces to training a linear SVM,
which is relatively fast (although with an iteration complexity of O(B) instead of O(p), usually
with B > p, but still independent of n). In contrast, single-stage approaches save the initial cost
and pay the price of non-linear SVM training, in the hope that the initial saving amortizes. The
latter strategy is generally applied by budget approaches.

GPU-ready Parallel Solvers. The first GPU-ready SVM solver with a significant impact
was ThunderSVM [25]. It is a parallel dual subspace ascent method. Algorithmically, it simply
performs the same computations as LIBSVM, but it executes many subspace ascent steps in
parallel. The steps are damped in order to avoid overshooting, but since there does not seem to
be any rigorous justification (like a convergence proof) for the method, it should be considered
a heuristic. Yet, in practice, it works very reliably, and it represents considerable progress over
LIBSVM’s sequential solver. To the best of our knowledge, it is the only GPU-ready SVM solver
using a dual training scheme.

The EigenPro method [15] contrasts ThunderSVM im many aspects. The solver is based
on modern deep learning frameworks (there are Tensorflow and PyTorch versions). Training is
based on SGD on the primal problem. This naturally leverages opportunities for parallelism by
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means of mini-batch gradient descent, which comes with convergence guarantees, although at
a slower rate than dual methods. Moreover, EigenPro is already an approximate solver. It is
based on eigen decomposition of a sub-matrix of Q (based on a random subset of the data, see
NystrÃ¶m sampling above). On this matrix it performs a whitening operation. This brings a
decisive speedup, since it removes most of the ill-conditioning from the resulting optimization
problem, which hence becomes much easier to solve with first order methods like SGD.

4 A Low-rank Parallel Dual SVM Solver

We aim to combine three types of approaches: (1) we would like to build on the fast convergence
of dual solvers, (2) we would like to achieve the fast iteration complexity of budget and low-rank
methods, and (3) we aim for an algorithm with GPU-friendly computations. Any combination
of two out of three goals was already demonstrated in the past, see [18, 15, 25]. In the design of
such a method, the following considerations and trade-offs need to be taken into account:

• The matrix Q is of size n × n. For large data sets with millions of points, it does not fit
into the RAM even of high-end server machines. Therefore, existing solvers either work
with a (row/column-based) kernel cache, or they restrict training to chunks of data for a
while, before moving on to the next chunk. However with a budget B ≪ n in place, a
factor G of a low-rank approximation of GGT ≈ Q is only of size n×B. For B ≈ 103 and
n ≈ 106, such a matrix fits into the available memory of a laptop with 8 GB RAM. For
server machines with large amounts of RAM, we can even afford two orders of magnitude
more (e.g., B ≈ 104 and n ≈ 107). At the time of writing (March 2022), our largest server
machine is equipped with 512 GB of RAM, while current high-end GPUs come with up
to 80 GB of RAM. In other words, a complete pre-computation of a low-rank factor G

becomes feasible even for large2 data sets.

• As a side effect, whitening the matrix GGT comes nearly for free based on the eigen
decomposition of a B ×B sub-matrix of Q, which is needed anyway for the computation3

of the factor G. This is akin to the EigenPro method, but less relevant in our setting, since
the dual coordinate ascent solver is not affected by the bad conditioning of the primal
problem. On the other hand, it is relevant that for some data sets we find a highly skewed
eigenvalue spectrum. As soon as the eigenvalues fall below a threshold close the machine
precision times the largest eigenvalue, the subspaces are subject to strong numerical noise
while contributing only minimally to the kernel computation. This allows us to drop such
components, which further reduces the effective dimension (adaptively) and hence allows
us to process even larger data sets.

• Pre-computing the kernel matrix precludes otherwise effective budget maintenance tech-
niques like merging of support vectors, since merging alters Q (and hence G) in a non-linear
and kernel-dependent fashion. Therefore we settle on a fixed (yet data dependent) feature
space representation based on a random sample. This turns out to be equivalent to the

2These are surely not be the largest data sets in existence, but they are definitely large by the standards of
the SVM literature.

3A Cholesky decomposition is an attractive alternative at first glance, but since kernel matrices can be ill-
conditioned, it regularly runs into numerical problems by requiring strict positive definiteness.
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second-most attractive budget maintenance strategy: projection onto the remaining sup-
port vectors [24]. The difference is that all projections are pre-computed, hence avoiding
an O(B3) operation per SMO step.

• The precomputation of G effectively turns our approach into a two-stage method. Perform-
ing a SMO step followed by a projection-based budget maintenance operation is exactly
equivalent to performing a SMO step with an approximate kernel, which is given by GGT

instead of Q. The second stage indeed reduces to solving a linear SVM problem where the
original data points are replaced with the rows of G.

• The excellent study [10] and also our own experience clearly indicate that dual methods
are generally superior to primal SGD-based solvers for obtaining SVM solutions of high
quality. Therefore we apply a dual coordinate ascent solver, despite the fact that it offers
fewer opportunities for parallelization. This decision is made in the expectation that the
faster convergence in combination with additional opportunities for parallelization make
up for it.

As indicated above, a large number of approximate SVM training schemes was already pro-
posed in the literature. Therefore it is not surprising that we arrived as a solution that is related
to existing approaches. Our solver has conceptual similarity with the low-rank linearization
SVM (LLSVM) [27], in the sense that it performs the same type of computations. LLSVM was
proposed 10 years ago. Although the two-stage approach looks quite similar at first glance, there
are major and highly relevant differences:
• LLSVM builds a model based on relatively few but carefully selected “landmark” points, by

default 50. However, in our experience, the budget size should be in the order of hundreds
or better thousands in order to achieve a sufficiently good approximation.

• LLSVM performs training by iterating over the data set only once, where linear SVM
training proceeds in chunks of 50,000 points. In order to make good use of the precomputed
kernel values, 30 epochs are performed within each chunk. Hence, each point is used
exactly 30 times, irrespective of the achieved solution accuracy. In contrast, in our solver,
a standard stopping criterion (similar to [10]) is employed to detect convergence.

• We remove the concept of chunks altogether and instead demand that the full matrix G

fits into memory. This leverages the capabilities of today’s compute servers, simplifies the
design, and maybe most importantly, it enables fast convergence to the optimal solution cor-
responding to the low-rank kernel represented by G and the application of a corresponding
stopping criterion.

• We implement all steps of the solver in a multi-core and GPU-ready fashion.

Algorithm Overview. The resulting algorithmic steps with their two-stage organization
are depicted in figure 1. We call the resulting algorithm low-rank parallel dual (LPD) SVM. For
a GPU implementation, it is important to design all processing steps in such a way that they
work in a streaming fashion, at least for cases in which G fits into CPU memory but not into
GPU memory (this is similar to but not as restrictive as the chunking approach of LLSVM). The
ability to split all computations into smaller chunks is also important when leveraging multi-GPU
systems.
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The multi-stage approach allows for considerable freedom. To this end, both stages (compu-
tation of G and linear SVM training) can be performed by CPU and GPU, at the discretion of
the user. This also holds for the prediction step (not shown), which is absent in training, but
active in the prediction, test, and cross-validation modes of our software.

Shinking. LIBSVM pays considerable attention to “details” like efficient caching and shrink-
ing. Due to complete precomputation of G, we do not have a need for a kernel cache. However,
shrinking plays an important role. The heuristic implemented in LIBSVM is known to be some-
what brittle, but it can be very effective when working well. We opt for a simplistic strategy:
if a variable was not changed for k steps in a row (we use k = 5) then we remove the variable
from the problem, and we dedicate a fixed fraction η of the total computation time (say, η = 5%)
to checking whether removed variables should be reconsidered. This heuristic turns out to be
far more robust than LIBSVM’s strategy which lacks a systematic way of re-activating variables.
We will see in the next section that shrinking considerably accelerates the linear SVM training
phase.

Cross Validation, Parameter Tuning, and Multi-Class Training. In reality, we rarely
train a single SVM. Kernel SVMs have parameters like the kernel bandwidth and the regulariza-
tion parameter C (or λ) which absolutely need tuning in order to deliver top performance. While
powerful parameter tuning procedures based on (Bayesian) optimization are widely available, for
low-dimensional problems like this, a simple grid search does the job. It brings the additional
benefit that multiple SVMs are trained with the same kernel, which allows to reuse the matrix G

and hence the complete first stage of the solver. The same applies to cross-validation: we simply
fix the feature space representation once for the whole data set, pre-compute G, and only then
sub-divide the data into folds.4 Also, when searching a grid of growing values of C, we warm-
start the solver from the optimal solution of the nearest value of C already completed. None
of these techniques is novel, but they are rarely implemented, although they yield considerable

4While this proceeding may yield a slightly optimistic bias (since some basis vectors may stem from the
validation set), it is perfectly suitable for parameter tuning (since all parameter settings profit in the same way),
and offers a considerable computational advantage.
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Figure 1: Algorithm design as a two-stage method.
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speed-ups. In our solver their role goes well beyond pure convenience, since many linear training
runs can share the first stage of the computation.

A further important point is the handling of classification problem with more than two classes.
In this regard we follow the design of LIBSVM [4], which implements a one-versus-one approach.
We do this for the following reason: one-versus one means that independent SVMs are trained to
separate each pair of classes. What sounds like an immense burden at first, since the number of
pairs grows quadratically with the number of classes, is more than alleviated by the fact that the
sub-problems are relatively small. Moreover, creating independent sub-problems is a welcome
opportunity for parallelization. For an in-depth discussion of the pros and cons of this approach
we refer the interested reader to [8]. In our experiments we demonstrate high efficiency of this
scheme on problems with up to 1000 classes, corresponding to roughly half a million pairs of
classes.

Multi-core and GPU Implementation. Our implementation uses parallelism at three
levels: vectorization within each single CPU core (implemented by the highly optimized Eigen
C++ library5), multi-core parallelism (using OpenMP6), and GPU parallelism (using CUDA7).
For the latter technology, we distinguish between a single streaming multiprocessor (SM) and
a full GPU. We even implement multi-GPU support for problems where it makes sense, i.e., if
there is sufficient opportunity for parallelism.

In the first stage of computing G, the computationally heavy steps are batch kernel compu-
tation, eigen decomposition, and matrix-matrix products. All of these are extremely efficient
on the GPU, using our own CUDA kernels, the cuSOLVER library, and the cuBLAS library,
respectively. On the CPU, we rely on Eigen, and we distribute chunks to multiple CPU cores
using OpenMP. For all of these steps, the GPU turns out to be far superior to the CPU.

Sadly, ThunderSVM and EigenPro seem to lack proper support for sparse data, which is
commonly encountered in the SVM context. For EigenPro (relying on deep learning software
backends) this is understandable, since the focus is on images and similar data, which is usually
dense. However, also ThunderSVM converts data to a dense format for kernel computations. The
simple reason is that for most general-purpose kernels in common use (polynomial, Gaussian and
hyperbolic tangent), batch kernel operations require a matrix-matrix multiplication at their core.
It seems that only specific cases of such products are implemented in existing GPU libraries,
including cuSPARSE. In our solver, we implemented all kernel operations based on efficient
sparse matrix products. For CPU-based processing we rely on the Eigen C++ library, while for
(far more efficient) GPU-based processing, we implemented sparse matrix products as custom
CUDA kernels.

In the second stage of linear SVM training, the trade-offs turn out to be quite different. In
contrast to ThunderSVM, all kernels are precomputed in the first stage. This is a logical and
efficient step, but it removes most opportunities for parallelism. While ThunderSVM needs to
process n · p floating point values per data points (where p is the dimension of the input space
X ⊂ R

p), we only need to handle B values. Although removing opportunities for parallelism,
this is still a great acceleration, since the old wisdom that the fastest computation is the one
that does not run at all still holds.

5https://eigen.tuxfamily.org/
6https://www.openmp.org/
7https://developer.nvidia.com/
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As a result, a single SMO (coordinate ascent) step runs extremely fast on a single CPU in
a fully vectorized fashion. The corresponding GPU implementation is somewhat slowed down
by the need for a parallel reduction operation. Also, the relatively low amount of parallelism
precludes the use of more than one SM on the GPU, since a single SM can maintain the current
weight vector in its fast scratchpad memory, while the communication cost of multiple SMs would
slow down the extremely fast SMO loop. For current CUDA architectures this means that a total
of “only” 1024 threads cooperate by computing B summands per data point or dual variable. To
make the orders of magnitude clear: in our solver, for a realistic value like B = 103, each
CPU core performs several million coordinate ascent steps per second. At that pace, multi-core
communication would incur an unacceptable overhead, and the same holds when communicating
between multiple SMs within a GPU.

This leaves us with the (luxury) problem of fully leveraging server GPUs, which come with
more than 100 SMs each. With a single training run of a binary classification problem this is
simply not possible, and CPU-based training should be preferred. However, when performing
even only a tiny 5×5 grid search using 10-fold cross validation on a 10-class dataset like MNIST,
we need to train a total of 5 × 5 × 10 ×

(

10
2

)

= 11, 250 binary SVMs: one for each parameter
vector, one for each hold-out set, and one for each pair of classes. This is far more parallelism
than we need to fully exploit even multiple GPUs at the same time, while the first stage needs
to run only five times (once for each kernel parameter).

Making predictions is relatively fast compared with training. One decisive difference is that
predictions can be computed in parallel, so that for this task, the GPU is vastly superior to the
CPU. Our implementation therefore defaults to the following behavior: computation of G and
prediction are performed by the GPU and SMO training runs on the CPU. This is confirmed in
the next section as a solid default.

Recipe. In summary, our approach has conceptually close predecessors in the existing lit-
erature, which we polish up far beyond aesthetics by adding shrinking, a meaningful stopping
criterion, warm starts, and proper support for cross-validation and parameter tuning. We put
considerable effort into exploiting parallelism in all stages of the solver on CPU and GPU. Finally,
we arrive at quite different trade-offs than older solvers through a combination of large available
memory and memory saving techniques, in particular the low-rank approach, and by discarding
small eigen values. This is how we arrive at the recipe “polishing, parallelism, and more RAM”
for fast large-scale SVM training.

5 Experimental Evaluation

The main evidence for the value of our methodology is of empirical nature. We present experi-
mental results to answer the following research questions:
• How fast is our approach compared with existing solvers?
• How scalable is our approach, in particular for multi-class problems?
• How do the various computational components perform on multi-core CPUs and on high-

end GPUs?
• How does shrinking impact performance?
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data set file size # classes size n budget B regular. C kernel γ

Adult (a9a) 2.3 MB 2 32,561 1,000 25 2−7

Epsilon 12 GB 2 400,000 10,000 25 2−4

SUSY 2.4 GB 2 5,000,000 1,000 25 2−7

MNIST-8M 12 GB 10 8,100,000 10,000 25 2−22

ImageNet 59 GB 1000 1,281,167 1,000 24 2−24

Table 1: Data sets used in this study, including tuned hyperparameters.

Experimental Setup. We trained SVMs on one mid-sized and four large data sets, see
table 1. The first four data sets are available from the LIBSVM website.8 The ImageNet data
set [7] can be obtained for free for non-commercial research.9 We turned it into an SVM training
problem by propagating the images through a pre-trained VGG-16 network (shipped with keras)
and extracting the activations of the last convolution layer, which is of dimension 25,088. The
resulting feature vectors are sparse due to the ReLU activation function.

We used the Gaussian kernel k(x, x′) = exp(−γ‖x − x′‖2) in all experiments. The hyperpa-
rameters C and γ were tuned with grid-search and cross-validation.

All timings were measured on a compute server with 512 GB of RAM, two Intel Xeon 4216
CPUs (up to 64 concurrent threads), and four NVIDIA A100 GPUs (40 GB RAM each).

In the spirit of open and reproducible research, our software is available under a permissive
open-source BSD-3-clause license.10

Comparison with Existing Solvers. We aimed to compare with the following solvers:
ThunderSVM,11 EigenPro,12 and LLSVM.13 However, we failed to make (the PyTorch version
of) EigenPro deliver meaningful results beyond the built-in MNIST example. On the chosen
data sets, it seems to be quite sensitive data scaling, resulting in numerical instability. Despite
our disappointment, we had to exclude EigenPro from the comparison. We therefore present
performance data for ThunderSVM, LLSVM, and our own method LPD-SVM in table 2. The
same data is displayed graphically in figure 2.

First of all, while being quite fast (provided that only a single CPU core is used), LLSVM
fails to deliver sufficiently accurate solutions. On the Epsilon problem, it consistently yields
guessing accuracy (50% error). This is for its non-adaptive stopping rule, which does not check
for convergence. It is of course easy to be fast if the job is not complete. This seems to be the
case for LLSVM.

In terms of accuracy, LPD-SVM comes quite close to the (nearly exact) solutions obtained by
ThunderSVM. On the Epsilon problem, we pay for the budget approximation with an increase
of the error of a bit more than one percent, while in the other cases, error rates are quite close.

8https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
9https://www.image-net.org/

10https://github.com/TGlas/LPD-SVM
11https://github.com/Xtra-Computing/thundersvm
12https://github.com/EigenPro
13https://github.com/djurikom/BudgetedSVM
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solver indicator Adult Epsilon SUSY MNIST-8M ImageNet

LLSVM training 1.51 48.38 71.93 — —

prediction 0.25 23.84 29.98 — —

error 27.3 50.0 27.52 — —

ThunderSVM training 2.25 5, 315 14, 604 7, 517 > 42 hours

prediction 1.42 470.51 5, 128 11.07 —

error 14.92 8.70 19.99 0.95 —

LPD-SVM training 2.11 89.86 197.64 868 1, 402.86

prediction 1.62 12.94 1.22 2.08 36.22

error 14.77 9.85 20.08 1.20 37.52

Table 2: Performance results of the different solvers: training and prediction time (seconds),
and classification error (in percent). LLSVM is not applicable to data sets with more than
two classes. ThunderSVM training on ImageNet stopped after 42 hours with an out-of-memory
error. At that point, training was about 83% complete. For LLSVM, we observed huge random
deviations of predictive performance (about ±13.6% for Adult and about 4.6% for SUSY). In
the table, we report mean values. Also the best values are not competitive compared with the
other solvers.

This slight loss of predictive performance is expected and in line with the general experience
with low-rank approximations in the SVM literature.

At the same time, LPD-SVM systematically outperforms ThunderSVM in terms of speed,
both at training and at prediction time. This is particularly true for the large data sets where the
low-rank approach makes a decisive difference by lowering the iteration complexity considerably.
We see experimentally that the net difference is roughly one to two orders of magnitude. For
the simple scenario of training a single SVM classifier, the GPU cannot be fully utilized during
training. Hence, the speed-up over ThunderSVM is fully attributed to the low-rank approach.
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Figure 2: Plot of the timing data from table 2 on a logarithmic scale.
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Figure 3: Timing breakdown into the three stages “preparation” (red; first three steps in figure 1),
“computation of the matrix G” (green; step four in figure 1), and “linear SVM training” (magenta),
on CPU (bright) and GPU (dark). All durations are in seconds, depicted on a logarithmic scale.
For two data sets, training times on the GPU are missing since the matrix G does not fit into
GPU memory.

Multi-Class SVM Training. We did not achieve a competitive error rate on the ImageNet
problem (the VGG-16 network performs better). Here, we are mostly interested in investigating
the scaling of our solver to problems with many classes. Indeed, it takes LPD-SVM only about
24 minutes to train nearly half a million large-margin classifiers. This corresponds to less than 3
milliseconds per binary problem. It seems safe to conclude that—at least computationally—the
one-versus-one approach is very well suited for training large-scale SVMs.

CPU vs. GPU Performance. When looking at the specifications of modern server CPUs
and GPUs then one would expect the GPU to clearly dominate. However, despite our effort of
implementing an efficient SMO solver natively on the GPU with custom CUDA kernels, CPUs
are still a better match for the inherently sequential dual algorithm than GPUs. In our empirical
data, the CPU wins the race on both data sets where G fits into GPU memory, and in the other
three cases GPU-based training is not an option at all. The GPU cannot play its strengths for
the simple reason that the SMO loop is memory-bound, not compute-bound (it is dominated by
computing inner products of vectors of dimension B, which is a far too low dimension for the
GPU). While the GPU has a larger net memory throughput, the CPU has a faster clock speed,
more efficient caches, and a very effective pre-fetching mechanism.

That being said, the overall role of the GPU must not be under-estimated. It vastly reduces
the cost for preparing the matrix G, which can otherwise be the dominant cost on the CPU, and
it also speeds up predictions. This way, the two types of processors (CPU and GPU) contribute
jointly to fast training. If any of the two is dropped then the overall training times increase
significantly.

Figure 3 gives a more detailed picture by breaking down the timings of the different stages
for GPU and CPU. It becomes clear that the GPU is far more suitable for the preparation of G
and for making predictions, while the CPU outperforms the GPU for SMO training. This holds
true even for the Imagenet problem where all 4 × 108 = 432 GPU processors are running SMO
loops in parallel, as compared with 64 CPU cores.

It can also be observed that the trade-offs presented by the two-stage approach differ quite
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Adult Epsilon SUSY MNIST-8M

total time 247.43 2, 837 28, 163 84, 600

time per binary problem 0.99 11.34 112.65 7.52

speed-up ×2.1 ×7.3 ×1.75 ×2.6

Table 3: Timings of the hyperparameter search and cross-validation experiments. All times are
in seconds.

significantly between data sets, and depending on whether computations are carried out on CPU
or GPU. When using the GPU then the first stage is generally faster than the second stage,
which means that the investment made in the first stage amortizes. However, when solving the
Epsilon problem completely on the CPU, this is not so clear, since the computation of G takes
the lion’s share of the time.

Shrinking. We evaluate our shrinking algorithm by simply turning it on or off and measuring
the optimization time. In order to achieve clean results, we restrict time measurements to the
second phase (SMO training). Based on prior experience, we expect shrinking to yield a speed-up
in general, but on the other hand, wrong shrinking decision can cost performance. It turns out
that shrinking is a complete game-changer: without shrinking, the training time for the Adult
data increases by factor 220, while for Epsilon it increases by factor of 350. Due to excessive
training times, we did not perform the test for all data sets. This impressive speed-up is in
part due to the fact that after removing many variable for fine tuning in the late phase of the
optimization, at memory demand for the relevant sub-matrix of G reduces and the processor
cache becomes for effective.

Parameter Tuning and Cross-Validation. We tested the ability of our solver to support
hyperparameter grid search and cross-validation as follows. For log2(C), we defined the grid
{0, 1, . . . , 9}, and we varied log2(γ) in the range {g∗ − 2, g∗ − 1, g∗, g∗ + 1, g∗ + 2}, where g∗ =
log2(γ

∗) is the optimal value, see the rightmost column of table 1. For each hyperparameter
setting, we performed 5-fold cross validation. Hence, we trained a total of N = 250 ·

(

c
2

)

binary
SVMs, where c is the number of classes of the problem. The results are found in table 3. It lists
the total time, the time per binary problem (the first value divided by N), and the speed-up,
which is estimated from the training time from table 2 divided by the time per binary problem.

The speed-up is around a factor of two in most cases, and more than seven for the Epsilon
data. This is in part because the first stage needs to run only five times (once for each value of
γ), while previous computations can be reused for the remaining N −5 training runs. This reuse
of the precomputation of G is only responsible for one part of the speed-up, while another part
comes from warm-starts with solutions corresponding to smaller values of C, and from a better
utilization of the compute resources (cores).

Discussion. Our experimental findings answer our research questions as follows. The pro-
posed LPD-SVM is extremely fast, with a speed-up of roughly one to two orders of magnitude
over ThunderSVM on large problems. This is despite the fact that the SMO loop runs on the
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CPU. LPD-SVM suffers only a minimal increase of error rates due to the budget approach. It
scales very well to multi-class problems with many classes. We see performance gains from prop-
erly implemented cross-validation and grid search, and our shrinking algorithm turns out to be
extremely effective. We believe that these results are a valuable addition to the state of the art,
and that our solver provides an interesting alternative existing SVM software.

6 Conclusion

We have presented a GPU-ready SVM solver optimized for compute servers, called Low-rank
Parallel Dual (LPD) SVM. It fits into the common framework of low-rank or budgeted schemes
for approximate SVM training. It takes the typical capabilities of modern server machines
into account: large random access memory, many-core CPUs, and high-end server GPUs. We
demonstrate its potential on a number of large-scale data sets, achieving state-of-the-art results.
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