Skip to main content

Optimization of Kirigami-Inspired Fingers Grasping Posture in Virtual Environments

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2023)

Abstract

Robotic grasping has been conceived as pivotal in achieving a broad spectrum of mechanical functionalities, including motion planning and perceptions via proprio- or exteroceptive sensory feedback control. In the last decade, these efforts have led to the development of artificial grippers that can provide multiple grasping modalities while handling various objects. Nonetheless, most of today’s grippers require a particular posture for a given set of functions and tasks with fixed scenarios, which results in concreating grasping pipelines for known and unknown objects. In this work, a double-fingered gripper is presented using a kirigami pattern. To optimize the posture of two kirigami-inspired fingers, SOFA (Simulation Open Framework Architecture) is employed, and we focus on how the posture of two fingers influences to forming of a set of contact points concerning the target object. Overall, the optimal posture of the kirigami-inspired two-fingered gripper is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carbone, G.: Grasping in Robotics. Springer London, London (2013). https://doi.org/10.1007/978-1-4471-4664-3

  2. George, J.A., et al.: Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci. Robot. 4, eaax2352 (2019). https://doi.org/10.1126/scirobotics.aax2352

  3. Babin, V., Gosselin, C.: Mechanisms for robotic grasping and manipulation. Annu. Rev. Control Robot. Auton. Syst. 4, 573–593 (2021). https://doi.org/10.1146/annurev-control-061520-010405

    Article  Google Scholar 

  4. Homberg, B.S., Katzschmann, R.K., Dogar, M.R., Rus, D.: Robust proprioceptive grasping with a soft robot hand. Auton. Robot. 43(3), 681–696 (2018). https://doi.org/10.1007/s10514-018-9754-1

    Article  Google Scholar 

  5. Zaidi, S., Maselli, M., Laschi, C., Cianchetti, M.: Actuation technologies for soft robot grippers and manipulators: a review. Curr. Rob. Rep. 2(3), 355–369 (2021). https://doi.org/10.1007/s43154-021-00054-5

    Article  Google Scholar 

  6. Shintake, J., Cacucciolo, V., Floreano, D., Shea, H.: Soft robotic grippers. Adv. Mater. 30, 1707035 (2018). https://doi.org/10.1002/adma.201707035

    Article  Google Scholar 

  7. Low, J.H., et al.: Hybrid tele-manipulation system using a sensorized 3-D-printed soft robotic gripper and a soft fabric-based haptic glove. IEEE Robot. Autom. Lett. 2, 880–887 (2017). https://doi.org/10.1109/LRA.2017.2655559

    Article  Google Scholar 

  8. Yuan, J., Guan, R., Du, L., Ma, S.: A robotic gripper design and integrated solution towards tunnel boring construction equipment. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, pp. 2650–2655. IEEE (2020). https://doi.org/10.1109/IROS45743.2020.9341200

  9. Elangovan, N., Gerez, L., Gao, G., Liarokapis, M.: Improving robotic manipulation without sacrificing grasping efficiency: a multi-modal, adaptive gripper with reconfigurable finger bases. IEEE Access 9, 83298–83308 (2021). https://doi.org/10.1109/ACCESS.2021.3086802

    Article  Google Scholar 

  10. Kang, B., Cheong, J.: Development of two-way self-adaptive gripper using differential gear. Actuators. 12, 14 (2022). https://doi.org/10.3390/act12010014

    Article  Google Scholar 

  11. Zhou, L., Ren, L., Chen, Y., Niu, S., Han, Z., Ren, L.: Bio-inspired soft grippers based on impactive gripping. Adv. Sci. 8, 2002017 (2021). https://doi.org/10.1002/advs.202002017

    Article  Google Scholar 

  12. Manti, M., Hassan, T., Passetti, G., D’Elia, N., Laschi, C., Cianchetti, M.: A bioinspired soft robotic gripper for adaptable and effective grasping. Soft Robot. 2, 107–116 (2015). https://doi.org/10.1089/soro.2015.0009

    Article  Google Scholar 

  13. Unsplash: Beautiful Free Images & Pictures | Unsplash. https://unsplash.com/. Accessed 30 Mar 2023

  14. Rafsanjani, A., Bertoldi, K., Studart, A.R.: Programming soft robots with flexible mechanical metamaterials. Sci. Robot. 4, eaav7874 (2019). https://doi.org/10.1126/scirobotics.aav7874

  15. Joe, S., Bernabei, F., Beccai, L.: A review on vacuum-powered fluidic actuators in soft robotics. In: Olaru, A. (ed.) Rehabilitation of the Human Bone-Muscle System. IntechOpen (2022). https://doi.org/10.5772/intechopen.104373

  16. Joe, S., Totaro, M., Beccai, L.: Analysis of soft Kirigami unit cells for TUNABLE stiffness architectures. In: 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, pp. 343–350. IEEE (2021). https://doi.org/10.1109/RoboSoft51838.2021.9479210

  17. Hou, X., Silberschmidt, V.V.: Metamaterials with negative Poisson’s ratio: a review of mechanical properties and deformation mechanisms. In: Silberschmidt, V.V., Matveenko, V.P. (eds.) Mechanics of Advanced Materials. EM, pp. 155–179. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17118-0_7

    Chapter  Google Scholar 

  18. Verma, D., Dong, Y., Sharma, M., Chaudhary, A.K.: Advanced processing of 3D printed biocomposite materials using artificial intelligence. Mater. Manuf. Process. 37, 518–538 (2022). https://doi.org/10.1080/10426914.2021.1945090

    Article  Google Scholar 

  19. Zheng, P., et al.: Smart manufacturing systems for Industry 4.0: conceptual framework, scenarios, and future perspectives. Front. Mech. Eng. 13(2), 137–150 (2018). https://doi.org/10.1007/s11465-018-0499-5

    Article  Google Scholar 

  20. Tiziani, L.O., Hammond, F.L.: Optical sensor-embedded pneumatic artificial muscle for position and force estimation. Soft. Robot. 7, 462–477 (2020). https://doi.org/10.1089/soro.2019.0019

    Article  Google Scholar 

  21. Joe, S., Wang, H., Totaro, M., Beccai, L.: Sensing deformation in vacuum driven foam-based actuator via inductive method. Front. Robot. AI. 8, 742885 (2021)

    Article  Google Scholar 

  22. Sareh, S., Rossiter, J.: Kirigami artificial muscles with complex biologically inspired morphologies. Smart Mater. Struct. 22, 014004 (2013). https://doi.org/10.1088/0964-1726/22/1/014004

    Article  Google Scholar 

  23. Jin, L., Forte, A.E., Deng, B., Rafsanjani, A., Bertoldi, K.: Kirigami-inspired inflatables with programmable shapes. Adv. Mater. 32, 2001863 (2020). https://doi.org/10.1002/adma.202001863

    Article  Google Scholar 

  24. Faure, F., et al.: SOFA: a multi-model framework for interactive physical simulation. In: Payan, Y. (eds.) Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol. 11, pp. 283–321. Springer Berlin (2012). https://doi.org/10.1007/8415_2012_125

  25. Duriez, C., Dubois, F., Kheddar, A., Andriot, C.: Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Trans. Vis. Comput. Graph. 12, 36–47 (2006). https://doi.org/10.1109/TVCG.2006.13

    Article  Google Scholar 

  26. Duriez, C., Guébert, C., Marchal, M., Cotin, S., Grisoni, L.: Interactive simulation of flexible needle insertions based on constraint models. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 291–299. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04271-3_36

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson B. Nardin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nardin, A.B., Joe, S., Beccai, L. (2023). Optimization of Kirigami-Inspired Fingers Grasping Posture in Virtual Environments. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14158. Springer, Cham. https://doi.org/10.1007/978-3-031-39504-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39504-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39503-1

  • Online ISBN: 978-3-031-39504-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics