Skip to main content

The Tall, the Squat, & the Bendy: Parametric Modeling and Simulation Towards Multi-functional Biohybrid Robots

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2023)

Abstract

Efficient computational mechanical models are needed to develop complex, multifunctional soft robotics systems. The field of biohybrid robotics is no exception and is currently limited to low degree-of-freedom lab-chained research devices due in part to limitations in existing design tools and limitations in the morphological sophistication of existing biohybrid structures. Here, we present an expanded use of an existing soft body modeling tool PyElastica, along with a parametric design pipeline for generating and simulating a lattice-based distributed actuation biohybrid robot. Our key contribution in this work is the parameterization of the geometry defining the lattice robot architecture both in terms of the bulk structure and the patterning of the muscles on that structure. By encoding multifunctionality in the robot’s architecture, we demonstrate extension, compression, and bending motion primitives exhibited by the same base lattice structure. We achieve structure-wide strains of 49.73% for extension, 30.59% for compression, and a \(48.60^{\circ }\) bend angle for the bent configuration, with all simulations completing in less than 45 s. From this pilot study, the computational model will be expanded to capture more complex and functional behaviors, such as esophageal-inspired peristalsis for internal transport, as well as earthworm-inspired locomotion. The computational modeling of these behaviors is a critical step toward the eventual design, fabrication, and deployment of complex biohybrid robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aydin, O., et al.: Neuromuscular actuation of biohybrid motile bots. Proc. Natl. Acad. Sci. 116(40), 19841–19847 (2019). https://doi.org/10.1073/pnas.1907051116

    Article  Google Scholar 

  2. Cvetkovic, C., et al.: Three-dimensionally printed biological machines powered by skeletal muscle. Proc. Natl. Acad. Sci. U.S.A. 111(28), 10125–10130 (2014). https://doi.org/10.1073/pnas.1401577111

    Article  Google Scholar 

  3. Daltorio, K.A., Boxerbaum, A.S., Horchler, A.D., Shaw, K.M., Chiel, H.J., Quinn, R.D.: Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots. Bioinspiration Biomimetics 8(3), 035003 (2013). https://doi.org/10.1088/1748-3182/8/3/035003

    Article  Google Scholar 

  4. Gazzola, M., Dudte, L.H., McCormick, A.G., Mahadevan, L.: Forward and inverse problems in the mechanics of soft filaments. R. Soc. Open Sci. 5(6), 171628 (2018). https://doi.org/10.1098/rsos.171628

    Article  MathSciNet  Google Scholar 

  5. Guix, M., et al.: Biohybrid soft robots with self-stimulating skeletons. Sci. Robot. 6(53), eabe7577 (2021). https://doi.org/10.1126/scirobotics.abe7577

    Article  Google Scholar 

  6. Herr, H., Dennis, R.G.: A swimming robot actuated by living muscle tissue. J. NeuroEng. Rehabil. 1, 1–9 (2004). https://doi.org/10.1186/1743-0003-1-6

    Article  Google Scholar 

  7. Kim, Y., et al.: Remote control of muscle-driven miniature robots with battery-free wireless optoelectronics. Sci. Robot. 8, eadd1053 (2023). https://doi.org/10.1126/scirobotics.add1053

    Article  Google Scholar 

  8. Lee, K.Y., et al.: An autonomously swimming biohybrid fish designed with human cardiac biophysics. Science 375(6581), 639–647 (2022). https://doi.org/10.1126/science.abh0474

    Article  Google Scholar 

  9. Morimoto, Y., Onoe, H., Takeuchi, S.: Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues. Sci. Robot. 3, 4440 (2018). https://doi.org/10.1126/scirobotics.aat4440

    Article  Google Scholar 

  10. Naughton, N., Sun, J., Tekinalp, A., Parthasarathy, T., Chowdhary, G., Gazzola, M.: Elastica: a compliant mechanics environment for soft robotic control. IEEE Robot. Autom. Lett. 6(2), 3389–3396 (2021). https://doi.org/10.1109/LRA.2021.3063698

    Article  Google Scholar 

  11. Pagan-Diaz, G.J., et al.: Simulation and fabrication of stronger, larger, and faster walking biohybrid machines. Adv. Funct. Mater. 28(23), 1801145 (2018). https://doi.org/10.1002/adfm.201801145

    Article  Google Scholar 

  12. Park, S.J., et al.: Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353(6295), 158–162 (2016). https://doi.org/10.1126/science.aaf4292

    Article  Google Scholar 

  13. Raman, R., et al.: Optogenetic skeletal muscle-powered adaptive biological machines. Proc. Natl. Acad. Sci. 113(13), 3497–3502 (2016). https://doi.org/10.1073/pnas.1516139113

    Article  Google Scholar 

  14. Ricotti, L., et al.: Biohybrid actuators for robotics: a review of devices actuated by living cells. Sci. Robot. 2(12), eaaq0495 (2017). https://doi.org/10.1126/scirobotics.aaq0495

    Article  Google Scholar 

  15. Schaffer, S., Lee, J.S., Beni, L., Webster-Wood, V.A.: A computational approach for contactless muscle force and strain estimations in distributed actuation biohybrid mesh constructs. Biomimetic Biohybrid Syst. 13548, 140–151 (2022). https://doi.org/10.1007/978-3-031-20470-8_15

    Article  Google Scholar 

  16. Seok, S., Onal, C.D., Cho, K.J., Wood, R.J., Rus, D., Kim, S.: Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans. Mechatron. 18(5), 1485–1497 (2013). https://doi.org/10.1109/TMECH.2012.2204070

    Article  Google Scholar 

  17. Smooth-On: Ecoflex 00–30 (2023). https://www.smooth-on.com/products/ecoflex-00-30/, Accessed 15 Jan 2023

  18. Wang, J., et al.: Computationally assisted design and selection of maneuverable biological walking machines. Adv. Intell. Syst. 3, 2000237 (2021). https://doi.org/10.1002/aisy.202000237

    Article  Google Scholar 

  19. Webster, V.A., et al.: Aplysia Californica as a novel source of material for biohybrid robots and organic machines. Biomimetic Biohybrid Syst. (2016). https://doi.org/10.1007/978-3-319-42417-0

    Article  Google Scholar 

  20. Webster, V.A., Nieto, S.G., Grosberg, A., Akkus, O., Chiel, H.J., Quinn, R.D.: Simulating muscular thin films using thermal contraction capabilities in finite element analysis tools. J. Mech. Behav. Biomed. Mater. 63, 326–336 (2016). https://doi.org/10.1016/j.jmbbm.2016.06.027

    Article  Google Scholar 

  21. Webster-Wood, V.A., Akkus, O., Gurkan, U.A., Chiel, H.J., Quinn, R.D.: Organismal engineering: toward a robotic taxonomic key for devices using organic materials. Sci. Robot. 2(12), 1–19 (2017). https://doi.org/10.1126/scirobotics.aap9281

    Article  Google Scholar 

  22. Zhang, X., Chan, F.K., Parthasarathy, T., Gazzola, M.: Modeling and simulation of complex dynamic musculoskeletal architectures. Nat. Commun. 10(1), 4825 (2019). https://doi.org/10.1038/s41467-019-12759-5

    Article  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by a Carnegie Mellon University (CMU) Dean’s Fellowship and the National Science Foundation Graduate Research Fellowship Program under grant No. DGE1745016 and by the National Science Foundation CAREER award program (grant No. ECCS-2044785). The authors would also like to acknowledge OpenAI’s ChatGPT for answering innumerable inane coding questions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria A. Webster-Wood .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 1083 KB)

Supplementary material 2 (mp4 881 KB)

Supplementary material 3 (mp4 1135 KB)

Supplementary material 4 (mp4 887 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schaffer, S., Webster-Wood, V.A. (2023). The Tall, the Squat, & the Bendy: Parametric Modeling and Simulation Towards Multi-functional Biohybrid Robots. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14158. Springer, Cham. https://doi.org/10.1007/978-3-031-39504-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39504-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39503-1

  • Online ISBN: 978-3-031-39504-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics