Abstract
Plant-insect interactions are crucial for most ecosystems, and they are still not fully understood. Detecting and monitoring interactions of insects with plants could enable tools to observe pollination and circumvent potential damage to crop plants by pests. Sensorized artificial traps have made significant advances in monitoring pests in crop fields. Nevertheless, a direct measurement from the leaf level could further improve the resolution of such technologies. Here, we explore the opportunity to use the plant leaf itself as a biohybrid sensor for plant-insect interactions. Instead of measuring electrophysiological signals, we investigate the spontaneous charging of a Nerium oleander leaf surface during walking of Halyomorpha halys (better known as Asian stink bug) by contact or triboelectrification using high-resolution current recordings and the ion-conductive leaf tissue as a measurement electrode. Our results suggest that the insect’s walking and take-off from the leaf surface produce characteristic static surface charges potentially due to contact/triboelectrification that are electrostatically induced into the cellular tissue. Although further investigations are required to understand the phenomenon and its capabilities, it suggests that the leaf could be directly used as a sensor for insect-leaf interactions. This could be a tool to investigate insect-plant interactions under controlled laboratory conditions and may, in the future, benefit technologies like smart and precision agriculture and even measuring interactions of robotic insects with plants on the leaf level by tuning the triboelectric signals.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
McPherson, J.E.: Invasive Stink Bugs and Related Species (Pentatomoidea): Biology, Higher Systematics, Semiochemistry, and Management (2018). https://doi.org/10.1201/9781315371221
Knight, K.M.M., Gurr, G.M.: Review of Nezara viridula (L.) management strategies and potential for IPM in field crops with emphasis on Australia. Crop Prot. 26(1), 1–10 (2007). https://doi.org/10.1016/j.cropro.2006.03.007
Cardim Ferreira Lima, M., de Almeida Leandro, M.E.D., Valero, C., Pereira Coronel, L.C., Gonçalves Bazzo, C.O.: Automatic detection and monitoring of insect pests—a review. Agriculture 10, 161 (2020). https://doi.org/10.3390/agriculture10050161
Amarathunga, D.C., Grundy, J., Parry, H., Dorin, A.: Methods of insect image capture and classification: a systematic literature review. Smart Agric. Technol. 1, 100023 (2021). https://doi.org/10.1016/j.atech.2021.100023
Kasinathan, T., Singaraju, D., Uyyala, S.R.: Insect classification and detection in field crops using modern machine learning techniques. Inf. Process. Agric. 8, 446–457 (2021). https://doi.org/10.1016/j.inpa.2020.09.006
Li, W., Zheng, T., Yang, Z., Li, M., Sun, C., Yang, X.: Classification and detection of insects from field images using deep learning for smart pest management: a systematic review. Ecol. Inform. 66, 101460 (2021). https://doi.org/10.1016/j.ecoinf.2021.101460
Johnson, J.B.: An overview of near-infrared spectroscopy (NIRS) for the detection of insect pests in stored grains. J. Stored Prod. Res. 86, 101558 (2020). https://doi.org/10.1016/j.jspr.2019.101558
Armiento, S., Mondini, A., Meder, F., Mazzolai, B.: A plant-hybrid system for wind monitoring connected with social media. In: 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), pp. 287–292. IEEE (2022). https://doi.org/10.1109/RoboSoft54090.2022.9762083
Meder, F., Thielen, M., Mondini, A., Speck, T., Mazzolai, B.: Living plant-hybrid generators for multidirectional wind energy conversion. Energy Technol. 8, 2000236 (2020). https://doi.org/10.1002/ente.202000236
Meder, F., Armiento, S., Naselli, G.A., Thielen, M., Speck, T., Mazzolai, B.: Biohybrid generators based on living plants and artificial leaves: Influence of leaf motion and real wind outdoor energy harvesting. Bioinspir. Biomim. 16, 055009 (2021). https://doi.org/10.1088/1748-3190/ac1711
Wang, Z.L.: From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 84, 096502 (2021). https://doi.org/10.1088/1361-6633/ac0a50
Dharmasena, R.D.I.G., et al.: Triboelectric nanogenerators: providing a fundamental framework. Energy Environ. Sci. 10, 1801–1811 (2017). https://doi.org/10.1039/C7EE01139C
Wang, Z.L., Wang, A.C.: On the origin of contact-electrification. Mater. Today 30, 34–51 (2019). https://doi.org/10.1016/j.mattod.2019.05.016
Lowell, J., Rose-Innes, A.C.: Contact electrification. Adv. Phys. 29, 947–1023 (1980). https://doi.org/10.1080/00018738000101466
Lacks, D.J., Mohan Sankaran, R.: Contact electrification of insulating materials. J. Phys. D Appl. Phys. 44(45), 453001 (2011). https://doi.org/10.1088/0022-3727/44/45/453001
Özel, M., Demir, F., Aikebaier, A., Kwiczak-Yiǧitbaşl, J., Baytekin, H.T., Baytekin, B.: Why does wood not get contact charged? Lignin as an antistatic additive for common polymers. Chem. Mater. 32, 7438–7444 (2020). https://doi.org/10.1021/acs.chemmater.0c02421
Meder, F., et al.: Energy conversion at the cuticle of living plants. Adv. Funct. Mater. 28, 1806689 (2018). https://doi.org/10.1002/adfm.201806689
Armiento, S., Filippeschi, C., Meder, F., Mazzolai, B.: Liquid-solid contact electrification when water droplets hit living plant leaves. Commun. Mater. 3, 79 (2022). https://doi.org/10.1038/s43246-022-00302-x
Salerno, G., Rebora, M., Gorb, E., Gorb, S.: Attachment ability of the polyphagous bug Nezara viridula (Heteroptera: Pentatomidae) to different host plant surfaces. Sci. Rep. 8, 10975 (2018). https://doi.org/10.1038/s41598-018-29175-2
Voigt, D., Perez Goodwyn, P., Sudo, M., Fujisaki, K., Varenberg, M.: Gripping ease in southern green stink bugs Nezara viridula L. (Heteroptera: Pentatomidae): coping with geometry, orientation and surface wettability of substrate. Entomol. Sci. 22, 105–118 (2019). https://doi.org/10.1111/ens.12345
Feldmann, D., Das, R., Pinchasik, B.-E.: How can interfacial phenomena in nature inspire smaller robots. Adv. Mater. Interfaces 8, 2001300 (2021). https://doi.org/10.1002/admi.202001300
Kim, D.W., Kim, S.W., Jeong, U.: Lipids: source of static electricity of regenerative natural substances and nondestructive energy harvesting. Adv. Mater. 30, 1804949 (2018). https://doi.org/10.1002/adma.201804949
Jie, Y., et al.: Natural leaf made triboelectric nanogenerator for harvesting environmental mechanical energy. Adv. Energy Mater. 8, 1703133 (2018). https://doi.org/10.1002/aenm.201703133
Wu, H., Chen, Z., Xu, G., Xu, J., Wang, Z., Zi, Y.: Fully biodegradable water droplet energy harvester based on leaves of living plants. ACS Appl. Mater. Interfaces 12, 56060–56067 (2020). https://doi.org/10.1021/acsami.0c17601
Baytekin, H.T., Patashinski, A.Z., Branicki, M., Baytekin, B., Soh, S., Grzybowski, B.A.: The mosaic of surface charge in contact electrification. Science 333(6040), 308–312 (2011). https://doi.org/10.1126/science.1201512
Baytekin, H.T., Baytekin, B., Incorvati, J.T., Grzybowski, B.A.: Material transfer and polarity reversal in contact charging. Angew. Chem. 124, 4927–4931 (2012). https://doi.org/10.1002/ange.201200057
Musa, U.G., Cezan, S.D., Baytekin, B., Baytekin, H.T.: The charging events in contact-separation electrification. Sci. Rep. 8, 1–8 (2018). https://doi.org/10.1038/s41598-018-20413-1
Xie, L., He, P.F., Zhou, J., Lacks, D.J.: Correlation of contact deformation with contact electrification of identical materials. J. Phys. D Appl. Phys. 47, 215501 (2014). https://doi.org/10.1088/0022-3727/47/21/215501
Clarke, D., Whitney, H., Sutton, G., Robert, D.: Detection and learning of floral electric fields by bumblebees. Science 340(6128), 66–69 (2013). https://doi.org/10.1126/science.1230883
Vaknin, Y., Gan-Mor, S., Bechar, A., Ronen, B., Eisikowitch, D.: The role of electrostatic forces in pollination. Plant Syst. Evol. 222, 133–142 (2000). https://doi.org/10.1007/BF00984099
Sutton, G.P., Clarke, D., Morley, E.L., Robert, D.: Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields. Proc. Natl. Acad. Sci. 113, 7261–7265 (2016). https://doi.org/10.1073/pnas.1601624113
Morley, E.L., Robert, D.: Electric fields elicit ballooning in spiders. Curr. Biol. 28, 2324–2330 (2018). https://doi.org/10.1016/j.cub.2018.05.057
Clarke, D., Morley, E., Robert, D.: The bee, the flower, and the electric field: electric ecology and aerial electroreception. J. Comp. Physiol. 203, 737–748 (2017). https://doi.org/10.1007/s00359-017-1176-6
Lapidot, O., Bechar, A., Ronen, B., Ribak, G.: Can electrostatic fields limit the take-off of tiny whiteflies (Bemisia tabaci)? J. Comp. Physiol. A 206(6), 809–817 (2020). https://doi.org/10.1007/s00359-020-01439-1
Jackson, C., McGonigle, D.: Direct monitoring of the electrostatic charge of house-flies (Musca domestica L.) as they walk on a dielectric surface. J. Electrostat. 63, 803–808 (2005). https://doi.org/10.1016/j.elstat.2005.03.075
Edwards, D.K.: Electrostatic charges on insects due to contact with different substrates. Can. J. Zool. 40, 579–584 (1962). https://doi.org/10.1139/z62-051
Toyota, M., et al.: Glutamate triggers long-distance, calcium-based plant defense signalling. Science 361(6407), 1112–1115 (2018). https://doi.org/10.1126/science.aat7744
Johns, S., Hagihara, T., Toyota, M., Gilroy, S.: The fast and the furious: rapid long-range signaling in plants. Plant Physiol. 185(3), 694–706 (2021). https://doi.org/10.1093/plphys/kiaa098
Hilker, M., Meiners, T.: How do plants “notice” attack by herbivorous arthropods? Biol. Rev. 85, 267–280 (2010). https://doi.org/10.1111/j.1469-185X.2009.00100.x
Voigt, D., Goodwyn, P.P., Fujisaki, K.: Attachment ability of the southern green stink bug, Nezara viridula (L.), on plant surfaces. Arthropod-Plant Interact. 12(3), 415–421 (2017). https://doi.org/10.1007/s11829-017-9591-8
Salerno, G., Rebora, M., Piersanti, S., Matsumura, Y., Gorb, E., Gorb, S.: Variation of attachment ability of Nezara viridula (Hemiptera: Pentatomidae) during nymphal development and adult aging. J. Insect Physiol. 127, 104117 (2020). https://doi.org/10.1016/j.jinsphys.2020.104117
Salerno, G., Rebora, M., Kovalev, A., Gorb, E., Gorb, S.: Contribution of different tarsal attachment devices to the overall attachment ability of the stink bug Nezara viridula. J. Comp. Physiol. A 204(7), 627–638 (2018). https://doi.org/10.1007/s00359-018-1266-0
Surapaneni, V.A., Bold, G., Speck, T., Thielen, M.: Spatio-temporal development of cuticular ridges on leaf surfaces of Hevea brasiliensis alters insect attachment: Leaf growth and insect walking forces. Roy. Soc. Open Sci. 7, 201319 (2020). https://doi.org/10.1098/rsos.201319
Prüm, B., Florian Bohn, H., Seidel, R., Rubach, S., Speck, T.: Plant surfaces with cuticular folds and their replicas: influence of microstructuring and surface chemistry on the attachment of a leaf beetle. Acta Biomater. 9, 6360–6368 (2013). https://doi.org/10.1016/j.actbio.2013.01.030
Meder, F., Mondini, A., Visentin, F., Zini, G., Crepaldi, M., Mazzolai, B.: Multisource energy conversion in plants with soft epicuticular coatings. Energy Environ. Sci. 15, 2545–2556 (2022). https://doi.org/10.1039/D2EE00405D
Acknowledgements
The authors acknowledge the support by the GrowBot project, the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 824074.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Armiento, S., Meder, F., Mazzolai, B. (2023). Triboelectric Charging During Insect Walking on Leaves: A Potential Tool for Sensing Plant-Insect Interactions. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14158. Springer, Cham. https://doi.org/10.1007/978-3-031-39504-8_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-39504-8_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-39503-1
Online ISBN: 978-3-031-39504-8
eBook Packages: Computer ScienceComputer Science (R0)