Skip to main content

Triboelectric Charging During Insect Walking on Leaves: A Potential Tool for Sensing Plant-Insect Interactions

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2023)

Abstract

Plant-insect interactions are crucial for most ecosystems, and they are still not fully understood. Detecting and monitoring interactions of insects with plants could enable tools to observe pollination and circumvent potential damage to crop plants by pests. Sensorized artificial traps have made significant advances in monitoring pests in crop fields. Nevertheless, a direct measurement from the leaf level could further improve the resolution of such technologies. Here, we explore the opportunity to use the plant leaf itself as a biohybrid sensor for plant-insect interactions. Instead of measuring electrophysiological signals, we investigate the spontaneous charging of a Nerium oleander leaf surface during walking of Halyomorpha halys (better known as Asian stink bug) by contact or triboelectrification using high-resolution current recordings and the ion-conductive leaf tissue as a measurement electrode. Our results suggest that the insect’s walking and take-off from the leaf surface produce characteristic static surface charges potentially due to contact/triboelectrification that are electrostatically induced into the cellular tissue. Although further investigations are required to understand the phenomenon and its capabilities, it suggests that the leaf could be directly used as a sensor for insect-leaf interactions. This could be a tool to investigate insect-plant interactions under controlled laboratory conditions and may, in the future, benefit technologies like smart and precision agriculture and even measuring interactions of robotic insects with plants on the leaf level by tuning the triboelectric signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McPherson, J.E.: Invasive Stink Bugs and Related Species (Pentatomoidea): Biology, Higher Systematics, Semiochemistry, and Management (2018). https://doi.org/10.1201/9781315371221

  2. Knight, K.M.M., Gurr, G.M.: Review of Nezara viridula (L.) management strategies and potential for IPM in field crops with emphasis on Australia. Crop Prot. 26(1), 1–10 (2007). https://doi.org/10.1016/j.cropro.2006.03.007

    Article  Google Scholar 

  3. Cardim Ferreira Lima, M., de Almeida Leandro, M.E.D., Valero, C., Pereira Coronel, L.C., Gonçalves Bazzo, C.O.: Automatic detection and monitoring of insect pests—a review. Agriculture 10, 161 (2020). https://doi.org/10.3390/agriculture10050161

  4. Amarathunga, D.C., Grundy, J., Parry, H., Dorin, A.: Methods of insect image capture and classification: a systematic literature review. Smart Agric. Technol. 1, 100023 (2021). https://doi.org/10.1016/j.atech.2021.100023

    Article  Google Scholar 

  5. Kasinathan, T., Singaraju, D., Uyyala, S.R.: Insect classification and detection in field crops using modern machine learning techniques. Inf. Process. Agric. 8, 446–457 (2021). https://doi.org/10.1016/j.inpa.2020.09.006

    Article  Google Scholar 

  6. Li, W., Zheng, T., Yang, Z., Li, M., Sun, C., Yang, X.: Classification and detection of insects from field images using deep learning for smart pest management: a systematic review. Ecol. Inform. 66, 101460 (2021). https://doi.org/10.1016/j.ecoinf.2021.101460

    Article  Google Scholar 

  7. Johnson, J.B.: An overview of near-infrared spectroscopy (NIRS) for the detection of insect pests in stored grains. J. Stored Prod. Res. 86, 101558 (2020). https://doi.org/10.1016/j.jspr.2019.101558

    Article  Google Scholar 

  8. Armiento, S., Mondini, A., Meder, F., Mazzolai, B.: A plant-hybrid system for wind monitoring connected with social media. In: 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), pp. 287–292. IEEE (2022). https://doi.org/10.1109/RoboSoft54090.2022.9762083

  9. Meder, F., Thielen, M., Mondini, A., Speck, T., Mazzolai, B.: Living plant-hybrid generators for multidirectional wind energy conversion. Energy Technol. 8, 2000236 (2020). https://doi.org/10.1002/ente.202000236

    Article  Google Scholar 

  10. Meder, F., Armiento, S., Naselli, G.A., Thielen, M., Speck, T., Mazzolai, B.: Biohybrid generators based on living plants and artificial leaves: Influence of leaf motion and real wind outdoor energy harvesting. Bioinspir. Biomim. 16, 055009 (2021). https://doi.org/10.1088/1748-3190/ac1711

    Article  Google Scholar 

  11. Wang, Z.L.: From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 84, 096502 (2021). https://doi.org/10.1088/1361-6633/ac0a50

  12. Dharmasena, R.D.I.G., et al.: Triboelectric nanogenerators: providing a fundamental framework. Energy Environ. Sci. 10, 1801–1811 (2017). https://doi.org/10.1039/C7EE01139C

    Article  Google Scholar 

  13. Wang, Z.L., Wang, A.C.: On the origin of contact-electrification. Mater. Today 30, 34–51 (2019). https://doi.org/10.1016/j.mattod.2019.05.016

    Article  Google Scholar 

  14. Lowell, J., Rose-Innes, A.C.: Contact electrification. Adv. Phys. 29, 947–1023 (1980). https://doi.org/10.1080/00018738000101466

    Article  Google Scholar 

  15. Lacks, D.J., Mohan Sankaran, R.: Contact electrification of insulating materials. J. Phys. D Appl. Phys. 44(45), 453001 (2011). https://doi.org/10.1088/0022-3727/44/45/453001

    Article  Google Scholar 

  16. Özel, M., Demir, F., Aikebaier, A., Kwiczak-Yiǧitbaşl, J., Baytekin, H.T., Baytekin, B.: Why does wood not get contact charged? Lignin as an antistatic additive for common polymers. Chem. Mater. 32, 7438–7444 (2020). https://doi.org/10.1021/acs.chemmater.0c02421

    Article  Google Scholar 

  17. Meder, F., et al.: Energy conversion at the cuticle of living plants. Adv. Funct. Mater. 28, 1806689 (2018). https://doi.org/10.1002/adfm.201806689

    Article  Google Scholar 

  18. Armiento, S., Filippeschi, C., Meder, F., Mazzolai, B.: Liquid-solid contact electrification when water droplets hit living plant leaves. Commun. Mater. 3, 79 (2022). https://doi.org/10.1038/s43246-022-00302-x

    Article  Google Scholar 

  19. Salerno, G., Rebora, M., Gorb, E., Gorb, S.: Attachment ability of the polyphagous bug Nezara viridula (Heteroptera: Pentatomidae) to different host plant surfaces. Sci. Rep. 8, 10975 (2018). https://doi.org/10.1038/s41598-018-29175-2

    Article  Google Scholar 

  20. Voigt, D., Perez Goodwyn, P., Sudo, M., Fujisaki, K., Varenberg, M.: Gripping ease in southern green stink bugs Nezara viridula L. (Heteroptera: Pentatomidae): coping with geometry, orientation and surface wettability of substrate. Entomol. Sci. 22, 105–118 (2019). https://doi.org/10.1111/ens.12345

    Article  Google Scholar 

  21. Feldmann, D., Das, R., Pinchasik, B.-E.: How can interfacial phenomena in nature inspire smaller robots. Adv. Mater. Interfaces 8, 2001300 (2021). https://doi.org/10.1002/admi.202001300

    Article  Google Scholar 

  22. Kim, D.W., Kim, S.W., Jeong, U.: Lipids: source of static electricity of regenerative natural substances and nondestructive energy harvesting. Adv. Mater. 30, 1804949 (2018). https://doi.org/10.1002/adma.201804949

    Article  Google Scholar 

  23. Jie, Y., et al.: Natural leaf made triboelectric nanogenerator for harvesting environmental mechanical energy. Adv. Energy Mater. 8, 1703133 (2018). https://doi.org/10.1002/aenm.201703133

    Article  Google Scholar 

  24. Wu, H., Chen, Z., Xu, G., Xu, J., Wang, Z., Zi, Y.: Fully biodegradable water droplet energy harvester based on leaves of living plants. ACS Appl. Mater. Interfaces 12, 56060–56067 (2020). https://doi.org/10.1021/acsami.0c17601

    Article  Google Scholar 

  25. Baytekin, H.T., Patashinski, A.Z., Branicki, M., Baytekin, B., Soh, S., Grzybowski, B.A.: The mosaic of surface charge in contact electrification. Science 333(6040), 308–312 (2011). https://doi.org/10.1126/science.1201512

    Article  Google Scholar 

  26. Baytekin, H.T., Baytekin, B., Incorvati, J.T., Grzybowski, B.A.: Material transfer and polarity reversal in contact charging. Angew. Chem. 124, 4927–4931 (2012). https://doi.org/10.1002/ange.201200057

    Article  Google Scholar 

  27. Musa, U.G., Cezan, S.D., Baytekin, B., Baytekin, H.T.: The charging events in contact-separation electrification. Sci. Rep. 8, 1–8 (2018). https://doi.org/10.1038/s41598-018-20413-1

    Article  Google Scholar 

  28. Xie, L., He, P.F., Zhou, J., Lacks, D.J.: Correlation of contact deformation with contact electrification of identical materials. J. Phys. D Appl. Phys. 47, 215501 (2014). https://doi.org/10.1088/0022-3727/47/21/215501

    Article  Google Scholar 

  29. Clarke, D., Whitney, H., Sutton, G., Robert, D.: Detection and learning of floral electric fields by bumblebees. Science 340(6128), 66–69 (2013). https://doi.org/10.1126/science.1230883

    Article  Google Scholar 

  30. Vaknin, Y., Gan-Mor, S., Bechar, A., Ronen, B., Eisikowitch, D.: The role of electrostatic forces in pollination. Plant Syst. Evol. 222, 133–142 (2000). https://doi.org/10.1007/BF00984099

    Article  Google Scholar 

  31. Sutton, G.P., Clarke, D., Morley, E.L., Robert, D.: Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields. Proc. Natl. Acad. Sci. 113, 7261–7265 (2016). https://doi.org/10.1073/pnas.1601624113

    Article  Google Scholar 

  32. Morley, E.L., Robert, D.: Electric fields elicit ballooning in spiders. Curr. Biol. 28, 2324–2330 (2018). https://doi.org/10.1016/j.cub.2018.05.057

    Article  Google Scholar 

  33. Clarke, D., Morley, E., Robert, D.: The bee, the flower, and the electric field: electric ecology and aerial electroreception. J. Comp. Physiol. 203, 737–748 (2017). https://doi.org/10.1007/s00359-017-1176-6

    Article  Google Scholar 

  34. Lapidot, O., Bechar, A., Ronen, B., Ribak, G.: Can electrostatic fields limit the take-off of tiny whiteflies (Bemisia tabaci)? J. Comp. Physiol. A 206(6), 809–817 (2020). https://doi.org/10.1007/s00359-020-01439-1

    Article  Google Scholar 

  35. Jackson, C., McGonigle, D.: Direct monitoring of the electrostatic charge of house-flies (Musca domestica L.) as they walk on a dielectric surface. J. Electrostat. 63, 803–808 (2005). https://doi.org/10.1016/j.elstat.2005.03.075

    Article  Google Scholar 

  36. Edwards, D.K.: Electrostatic charges on insects due to contact with different substrates. Can. J. Zool. 40, 579–584 (1962). https://doi.org/10.1139/z62-051

    Article  Google Scholar 

  37. Toyota, M., et al.: Glutamate triggers long-distance, calcium-based plant defense signalling. Science 361(6407), 1112–1115 (2018). https://doi.org/10.1126/science.aat7744

    Article  Google Scholar 

  38. Johns, S., Hagihara, T., Toyota, M., Gilroy, S.: The fast and the furious: rapid long-range signaling in plants. Plant Physiol. 185(3), 694–706 (2021). https://doi.org/10.1093/plphys/kiaa098

    Article  Google Scholar 

  39. Hilker, M., Meiners, T.: How do plants “notice” attack by herbivorous arthropods? Biol. Rev. 85, 267–280 (2010). https://doi.org/10.1111/j.1469-185X.2009.00100.x

    Article  Google Scholar 

  40. Voigt, D., Goodwyn, P.P., Fujisaki, K.: Attachment ability of the southern green stink bug, Nezara viridula (L.), on plant surfaces. Arthropod-Plant Interact. 12(3), 415–421 (2017). https://doi.org/10.1007/s11829-017-9591-8

    Article  Google Scholar 

  41. Salerno, G., Rebora, M., Piersanti, S., Matsumura, Y., Gorb, E., Gorb, S.: Variation of attachment ability of Nezara viridula (Hemiptera: Pentatomidae) during nymphal development and adult aging. J. Insect Physiol. 127, 104117 (2020). https://doi.org/10.1016/j.jinsphys.2020.104117

    Article  Google Scholar 

  42. Salerno, G., Rebora, M., Kovalev, A., Gorb, E., Gorb, S.: Contribution of different tarsal attachment devices to the overall attachment ability of the stink bug Nezara viridula. J. Comp. Physiol. A 204(7), 627–638 (2018). https://doi.org/10.1007/s00359-018-1266-0

    Article  Google Scholar 

  43. Surapaneni, V.A., Bold, G., Speck, T., Thielen, M.: Spatio-temporal development of cuticular ridges on leaf surfaces of Hevea brasiliensis alters insect attachment: Leaf growth and insect walking forces. Roy. Soc. Open Sci. 7, 201319 (2020). https://doi.org/10.1098/rsos.201319

    Article  Google Scholar 

  44. Prüm, B., Florian Bohn, H., Seidel, R., Rubach, S., Speck, T.: Plant surfaces with cuticular folds and their replicas: influence of microstructuring and surface chemistry on the attachment of a leaf beetle. Acta Biomater. 9, 6360–6368 (2013). https://doi.org/10.1016/j.actbio.2013.01.030

    Article  Google Scholar 

  45. Meder, F., Mondini, A., Visentin, F., Zini, G., Crepaldi, M., Mazzolai, B.: Multisource energy conversion in plants with soft epicuticular coatings. Energy Environ. Sci. 15, 2545–2556 (2022). https://doi.org/10.1039/D2EE00405D

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by the GrowBot project, the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 824074.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fabian Meder or Barbara Mazzolai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Armiento, S., Meder, F., Mazzolai, B. (2023). Triboelectric Charging During Insect Walking on Leaves: A Potential Tool for Sensing Plant-Insect Interactions. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14158. Springer, Cham. https://doi.org/10.1007/978-3-031-39504-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39504-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39503-1

  • Online ISBN: 978-3-031-39504-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics