Skip to main content

Mycelium Bridge as a Living Electrical Conductor: Access Point to Soil Infosphere

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14158))

Included in the following conference series:

Abstract

Fungal mycelium, a sensor and commutation highway for information in the form of electrical signals and biomarkers, covers a large section of the Earth’s biosphere, giving access to the “wood-wide web”. A bio-hybrid robot with fungal mycelium as a living agent for information collection and commutation is the missing link for data-driven precision agriculture – one of the ways to sustainability. Currently, we do not have effective access points due to the high localization of existing sensing approaches deriving us from holistic data on the mycelium level. Here we show a method for isolating the electrical signals within a living mycelium and characterize the ion movements with impedance and open circuit potential (OCP) study. The colonizing nature of the fungus was used to form a mycelium bridge between the grounded and floating nodes to isolate the electrical signals within the living organism. The average real part of the impedance (80 kΩ) demonstrates the effectiveness of the mycelium as a distributed salt bridge and the fluctuations in impedance (∼10 kΩ) and OCP (∼20 mV) at a predictable period (28–30 h) evidence the life processes of the fungus, e.g. the opening of Ca2+ channels. The use of living fungus as a biological sensor and connector shows important insight into truly biohybrid robotics. Access to fungal networks enables cooperation between ecosystems and data-driven decisions, leading to sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ‘Farms and farmland in the European Union-statistics’, eurostat- Statistics Explained (2018). https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Farms_and_farmland_in_the_European_Union_-_statistics. Accessed 27 Oct 2022

  2. Simard, S.W., Jones, M.D., Durall, D.M.: Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden, M.G.A., Sanders, I.R. (eds.) Mycorrhizal Ecology, Ecological Studies, vol. 157, pp. 33–74. Springer, Berlin (2003). https://doi.org/10.1007/978-3-540-38364-2_2

    Chapter  Google Scholar 

  3. Drigo, B., et al.: Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc. Natl. Acad. Sci. 107(24), 10938–10942 (2010). https://doi.org/10.1073/pnas.0912421107

    Article  Google Scholar 

  4. Heijden, M.G.A., Martin, F.M., Selosse, M., Sanders, I.R.: Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205(4), 1406–1423 (2015). https://doi.org/10.1111/nph.13288

    Article  Google Scholar 

  5. Adamatzky, A.: On spiking behaviour of oyster fungi Pleurotus djamor. Sci. Rep. 8(1), 7873 (2018). https://doi.org/10.1038/s41598-018-26007-1

    Article  Google Scholar 

  6. Olsson, S., Hansson, B.S.: Action potential-like activity found in fungal mycelia is sensitive to stimulation. Naturwissenschaften 82(1), 30–31 (1995). https://doi.org/10.1007/BF01167867

    Article  Google Scholar 

  7. Lew, R.R.: Ionic currents and ion fluxes in Neurospora crassa hyphae. J. Exp. Bot. 58(12), 3475–3481 (2007). https://doi.org/10.1093/jxb/erm204

    Article  Google Scholar 

  8. Adamatzky, A., Gandia, A., Chiolerio, A.: Towards fungal sensing skin. Fungal Biol. Biotechnol. 8(1), 6 (2021). https://doi.org/10.1186/s40694-021-00113-8

    Article  Google Scholar 

  9. Rayner, A.D.M.: The challenge of the individualistic mycelium. Mycologia 83(1), 48–71 (1991). https://doi.org/10.1080/00275514.1991.12025978

    Article  MathSciNet  Google Scholar 

  10. Smith, M.L., Bruhn, J.N., Anderson, J.B.: The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356(6368), 428–431 (1992). https://doi.org/10.1038/356428a0

    Article  Google Scholar 

  11. Simard, S.W., Beiler, K.J., Bingham, M.A., Deslippe, J.R., Philip, L.J., Teste, F.P.: Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol. Rev. 26(1), 39–60 (2012). https://doi.org/10.1016/j.fbr.2012.01.001

    Article  Google Scholar 

  12. Van’t Padje, A., Werner, G.D., Kiers, E.T.: Mycorrhizal fungi control phosphorus value in trade symbiosis with host roots when exposed to abrupt ‘crashes’ and ‘booms’ of resource availability. New Phytol. 229(5), 2933–2944 (2021). https://doi.org/10.1111/nph.17055

    Article  Google Scholar 

  13. Jiang, Y., et al.: Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356(6343), 1172–1175 (2017). https://doi.org/10.1126/science.aam9970

    Article  Google Scholar 

  14. Lew, R.R.: How does a hypha grow? The biophysics of pressurized growth in fungi. Nat. Rev. Microbiol. 9(7), 509–518 (2011). https://doi.org/10.1038/nrmicro2591

    Article  Google Scholar 

  15. Merckx, V., Bidartondo, M.I., Hynson, N.A.: Myco-heterotrophy: when fungi host plants. Ann. Bot. 104(7), 1255–1261 (2009). https://doi.org/10.1093/aob/mcp235

    Article  Google Scholar 

  16. Nature 388(6642) (1997).https://www.nature.com/nature/volumes/388/issues/6642#Article

  17. Angrish, R.: The wood wide web: tree talk in the forest. Resonance 27(8), 1429–1441 (2022). https://doi.org/10.1007/s12045-022-1435-x

    Article  Google Scholar 

  18. Berbara, R.L.L., Morris, B.M., Fonseca, H.M.A.C., Reid, B., Gow, N.A.R., Daft, M.J.: Electrical currents associated with arbuscular mycorrhizal interactions. New Phytol. 129(3), 433–438 (1995). https://doi.org/10.1111/j.1469-8137.1995.tb04314.x

    Article  Google Scholar 

  19. Wang, W., Shi, J., Xie, Q., Jiang, Y., Yu, N., Wang, E.: Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol. Plant 10(9), 1147–1158 (2017). https://doi.org/10.1016/j.molp.2017.07.012

    Article  Google Scholar 

  20. Adamatzky, A.: Towards fungal computer. Interface Focus 8(6), 20180029 (2018). https://doi.org/10.1098/rsfs.2018.0029

    Article  Google Scholar 

  21. Rall, W.: Core conductor theory and cable properties of neurons. Compr. Physiol., 39–97 (2011). https://doi.org/10.1002/cphy.cp010103

  22. Herman, K.C., Bleichrodt, R.: Go with the flow: mechanisms driving water transport during vegetative growth and fruiting. Fungal Biol. Rev. 41, 10–23 (2022). https://doi.org/10.1016/j.fbr.2021.10.002

    Article  Google Scholar 

  23. Kakiuchi, T.: Salt bridge in electroanalytical chemistry: past, present, and future. J. Solid State Electrochem. 15(7–8), 1661–1671 (2011). https://doi.org/10.1007/s10008-011-1373-0

    Article  Google Scholar 

  24. Adamatzky, A., et al.: Fungal electronics. Biosystems 212, 104588 (2022). https://doi.org/10.1016/j.biosystems.2021.104588

    Article  Google Scholar 

  25. Jaffe, L.F., Nuccitelli, R.: An ultrasensitive vibrating probe for measuring steady extracellular currents. J. Cell Biol. 63(2), 614–628 (1974). https://doi.org/10.1083/jcb.63.2.614

    Article  Google Scholar 

  26. Lew, R.R.: Comparative analysis of Ca2+ and H+ flux magnitude and location along growing hyphae of saprolegnia ferax and neurospora crassa. Eur. J. Cell Biol. 78(12), 892–902 (1999). https://doi.org/10.1016/S0171-9335(99)80091-0

    Article  Google Scholar 

  27. Abegunrin, A.: Effect of kitchen wastewater irrigation on soil properties and growth of cucumber (Cucumis sativus). J. Soil Sci. Environ. Manag. 4(7), 139–145 (2013). https://doi.org/10.5897/JSSEM2013.0412

    Article  Google Scholar 

  28. Toju, H., Guimarães, P.R., Olesen, J.M., Thompson, J.N.: Assembly of complex plant–fungus networks. Nat. Commun. 5(1), 5273 (2014). https://doi.org/10.1038/ncomms6273

    Article  Google Scholar 

  29. Aghajani, H., et al.: Influence of relative humidity and temperature on cultivation of pleurotus species. Maderas. Ciencia y tecnología 20(4), 571–578 (2018). https://doi.org/10.4067/S0718-221X2018005004501

  30. Indian Institute of Science Education and Research Kolkata (IISER-K), Mohanpur, West Bengal – 741246, India et al.: Evolution of bacterial and fungal growth media. Bioinformation 11(4), 182–184 (2015). https://doi.org/10.6026/97320630011182

  31. Thomas, M.A., Cooper, R.L.: Building bridges: mycelium–mediated plant–plant electrophysiological communication. Plant Biol. (2022). https://doi.org/10.1101/2022.07.20.500447

  32. Adamatzky, A.: Language of fungi derived from their electrical spiking activity. R. Soc. Open Sci. 9(4), 211926 (2022). https://doi.org/10.1098/rsos.211926

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Estonian Research Council grants PRG1498 and Kristjan Jaak Scholarship for short study visits (provided by Estonian Ministry of Education and Research and the Education and Youth Board).

The authors thank colleagues from the University of Tartu Leho Tedersoo, Professor in Mycorrhizal Studies for support and providing the oyster mushroom (Pleurotus ostreatus) strains and Hanna Hõrak, Associate Professor of Molecular Plant Physiology for allowing to use her laboratories for experimenting with fungi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrek Must .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geara, H., Valdur, KA., Must, I. (2023). Mycelium Bridge as a Living Electrical Conductor: Access Point to Soil Infosphere. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14158. Springer, Cham. https://doi.org/10.1007/978-3-031-39504-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39504-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39503-1

  • Online ISBN: 978-3-031-39504-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics