Skip to main content

Multimodal Parameter Inference for a Canonical Motor Microcircuit Controlling Rat Hindlimb Motion

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2023)

Abstract

This work explored synaptic strengths in a computational neuroscience model of a controller for the hip joint of a rat which consists of Ia interneurons, Renshaw cells, and the associated motor neurons. This circuit has been referred to as the Canonical Motor Microcircuit (CMM). It is thought that the CMM acts to modulate motor neuron activity at the output stage. We first created a biomechanical model of a rat hindlimb consisting of a pelvis, femur, shin, foot, and flexor-extensor muscle pairs modeled with a Hill muscle model. We then modeled the CMM using non-spiking leaky-integrator neural models connected with conductance-based synapses. To tune the parameters in the network, we implemented an automated approach for parameter search using the Markov chain Monte Carlo (MCMC) method to solve a parameter estimation problem in a Bayesian inference framework. As opposed to traditional optimization techniques, the MCMC method identifies probability densities over the multidimensional space of parameters. This allows us to see a range of likely parameters that produce model outcomes consistent with animal data, determine if the distribution of likely parameters is uni- or multi-modal, as well as evaluate the significance and sensitivity of each parameter. This approach will allow for further analysis of the circuit, specifically, the function and significance of Ia feedback and Renshaw cells.

This work was supported by NSF DBI 2015317 as part of the NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation Networks for Neuroscience Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Müller, M.: Dynamic time warping. In: Müller, M. (ed.) Information Retrieval for Music and Motion, pp. 69–84. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74048-3_4

    Chapter  Google Scholar 

  2. Alessandro, C., Rellinger, B.A., Barroso, F.O., Tresch, M.C.: Adaptation after vastus lateralis denervation in rats demonstrates neural regulation of joint stresses and strains. eLife 7, e38215 (2018). https://doi.org/10.7554/eLife.38215

  3. Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. In: Cohen, I., Huang, Y., Chen, J., Benesty, J. (eds.) Noise Reduction in Speech Processing. Springer Topics in Signal Processing, pp. 1–4. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00296-0_5

    Chapter  Google Scholar 

  4. Calvetti, D., Somersalo, E.: Sampling: the real thing. In: Calvetti, D., Somersalo, E. (eds.) Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing. STAMS, pp. 161–182. Springer, New York (2007). https://doi.org/10.1007/978-0-387-73394-4_9

    Chapter  MATH  Google Scholar 

  5. Chen, Z.: An overview of Bayesian methods for neural spike train analysis. Comput. Intell. Neurosci. 2013, 1–17 (2013). https://doi.org/10.1155/2013/251905. http://www.hindawi.com/journals/cin/2013/251905/

  6. Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: AnimatLab: a 3D graphics environment for neuromechanical simulations. J. Neurosci. Methods 187(2), 280–288 (2010). https://doi.org/10.1016/j.jneumeth.2010.01.005. https://linkinghub.elsevier.com/retrieve/pii/S0165027010000087

  7. Delp, S.L., et al.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007). https://doi.org/10.1109/TBME.2007.901024

    Article  Google Scholar 

  8. Deng, K., et al.: Biomechanical and sensory feedback regularize the behavior of different locomotor central pattern generators. Biomimetics 7(4), 226 (2022). https://doi.org/10.3390/biomimetics7040226. https://www.mdpi.com/2313-7673/7/4/226

  9. Deng, K., et al.: Neuromechanical model of rat hindlimb walking with two-layer CPGs. Biomimetics 4(1), 21 (2019). https://doi.org/10.3390/biomimetics4010021. https://www.mdpi.com/2313-7673/4/1/21

  10. Hultborn, H., Lindstrm, S., Wigstrm, H.: On the function of recurrent inhibition in the spinal cord. Exp. Brain Res. 37(2) (1979). https://doi.org/10.1007/BF00237722

  11. Ikkala, A., Hämäläinen, P.: Converting Biomechanical Models from OpenSim to MuJoCo (2020). https://doi.org/10.48550/ARXIV.2006.10618

  12. Ivashko, D., Prilutsky, B., Markin, S., Chapin, J., Rybak, I.: Modeling the spinal cord neural circuitry controlling cat hindlimb movement during locomotion. Neurocomputing 52–54, 621–629 (2003). https://doi.org/10.1016/S0925-2312(02)00832-9. https://linkinghub.elsevier.com/retrieve/pii/S0925231202008329

  13. Jackson, C., Nourse, W.R.P., Heckman, C.J., Tresch, M., Quinn, R.D.: Canonical motor microcircuit for control of a rat hindlimb. In: Hunt, A., et al. (eds.) Biomimetic and Biohybrid Systems, vol. 13548, pp. 309–320. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20470-8_31

    Chapter  Google Scholar 

  14. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, Perth, WA, Australia, vol. 4, pp. 1942–1948. IEEE (1995). https://doi.org/10.1109/ICNN.1995.488968. http://ieeexplore.ieee.org/document/488968/

  15. Lee, K.Y., Park, J.: Application of particle swarm optimization to economic dispatch problem: advantages and disadvantages, pp. 188–192 (2006). https://doi.org/10.1109/PSCE.2006.296295

  16. Lindén, H., Petersen, P.C., Vestergaard, M., Berg, R.W.: Movement is governed by rotational neural dynamics in spinal motor networks. Nature 610(7932), 526–531 (2022). https://doi.org/10.1038/s41586-022-05293-w. https://www.nature.com/articles/s41586-022-05293-w

  17. MacKay-Lyons, M.: Central pattern generation of locomotion: a review of the evidence. Phys. Ther. 82(1), 69–83 (2002). https://doi.org/10.1093/ptj/82.1.69. https://academic.oup.com/ptj/article/82/1/69/2837028

  18. McCrea, D.A., Rybak, I.A.: Organization of mammalian locomotor rhythm and pattern generation. Brain Res. Rev. 57(1), 134–146 (2008). https://doi.org/10.1016/j.brainresrev.2007.08.006. https://linkinghub.elsevier.com/retrieve/pii/S0165017307001798

  19. Miasojedow, B., Moulines, E., Vihola, M.: An adaptive parallel tempering algorithm. J. Comput. Graph. Stat. 22(3), 649–664 (2013). https://doi.org/10.1080/10618600.2013.778779. http://www.tandfonline.com/doi/abs/10.1080/10618600.2013.778779

  20. Nourse, W.R.P., Szczecinski, N.S., Quinn, R.D.: SNS-toolbox: a tool for efficient simulation of synthetic nervous systems. In: Hunt, A., et al. (eds.) Biomimetic and Biohybrid Systems, vol. 13548, pp. 32–43. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20470-8_4

    Chapter  Google Scholar 

  21. Pratt, C.A., Jordan, L.M.: IA inhibitory interneurons and Renshaw cells as contributors to the spinal mechanisms of fictive locomotion. J. Neurophysiol. 57(1), 56–71 (1987). https://doi.org/10.1152/jn.1987.57.1.56. https://www.physiology.org/doi/10.1152/jn.1987.57.1.56

  22. Rizzo, M.L., Székely, G.J.: Energy distance. Wiley Interdisc. Rev.: Comput. Stat. 8(1), 27–38 (2016). https://doi.org/10.1002/wics.1375. https://onlinelibrary.wiley.com/doi/10.1002/wics.1375

  23. Rybak, I.A., Stecina, K., Shevtsova, N.A., McCrea, D.A.: Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation: modelling afferent control of locomotor pattern generation. J. Physiol. 577(2), 641–658 (2006). https://doi.org/10.1113/jphysiol.2006.118711. https://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2006.118711

  24. Seth, A., et al.: OpenSim: simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput. Biol. 14(7), e1006223 (2018). https://doi.org/10.1371/journal.pcbi.1006223

    Article  Google Scholar 

  25. Shadmehr, R., Wise, S.P.: The Computational Neurobiology of Reaching and Pointing: A Foundation for Motor Learning. Computational neuroscience, MIT Press, Cambridge (2005)

    Google Scholar 

  26. Spencer, S.E.: Accelerating adaptation in the adaptive Metropolis-Hastings random walk algorithm. Aust. New Zealand J. Stat. 63(3), 468–484 (2021). https://doi.org/10.1111/anzs.12344. https://onlinelibrary.wiley.com/doi/10.1111/anzs.12344

  27. Stapor, P., et al.: PESTO: parameter EStimation TOolbox. Bioinformatics 34(4), 705–707 (2018). https://doi.org/10.1093/bioinformatics/btx676. https://academic.oup.com/bioinformatics/article/34/4/705/4562504

  28. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A functional subnetwork approach to designing synthetic nervous systems that control legged robot locomotion. Front. Neurorobot. 11, 37 (2017). https://doi.org/10.3389/fnbot.2017.00037. http://journal.frontiersin.org/article/10.3389/fnbot.2017.00037/full

  29. Todorov, E., Erez, T., Tassa, Y.: MuJoCo: a physics engine for model-based control. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033 (2012). https://doi.org/10.1109/IROS.2012.6386109. ISSN 2153-0866

  30. Vousden, W.D., Farr, W.M., Mandel, I.: Dynamic temperature selection for parallel tempering in Markov chain Monte Carlo simulations. Monthly Notices R. Astron. Soc. 455(2), 1919–1937 (2016). https://doi.org/10.1093/mnras/stv2422. https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stv2422

  31. Wang, Y.C., et al.: Multimodal parameter spaces of a complex multi-channel neuron model. Front. Syst. Neurosci. 16 (2022). https://www.frontiersin.org/articles/10.3389/fnsys.2022.999531

  32. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12(1), 1–24 (1972). https://doi.org/10.1016/S0006-3495(72)86068-5. https://linkinghub.elsevier.com/retrieve/pii/S0006349572860685

  33. Young, F.R., Chiel, H.J., Tresch, M.C., Heckman, C.J., Hunt, A.J., Quinn, R.D.: Analyzing modeled torque profiles to understand scale-dependent active muscle responses in the hip joint. Biomimetics 7(1), 17 (2022). https://doi.org/10.3390/biomimetics7010017. https://www.mdpi.com/2313-7673/7/1/17

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clayton Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jackson, C. et al. (2023). Multimodal Parameter Inference for a Canonical Motor Microcircuit Controlling Rat Hindlimb Motion. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14158. Springer, Cham. https://doi.org/10.1007/978-3-031-39504-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39504-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39503-1

  • Online ISBN: 978-3-031-39504-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics