Abstract
This work explored synaptic strengths in a computational neuroscience model of a controller for the hip joint of a rat which consists of Ia interneurons, Renshaw cells, and the associated motor neurons. This circuit has been referred to as the Canonical Motor Microcircuit (CMM). It is thought that the CMM acts to modulate motor neuron activity at the output stage. We first created a biomechanical model of a rat hindlimb consisting of a pelvis, femur, shin, foot, and flexor-extensor muscle pairs modeled with a Hill muscle model. We then modeled the CMM using non-spiking leaky-integrator neural models connected with conductance-based synapses. To tune the parameters in the network, we implemented an automated approach for parameter search using the Markov chain Monte Carlo (MCMC) method to solve a parameter estimation problem in a Bayesian inference framework. As opposed to traditional optimization techniques, the MCMC method identifies probability densities over the multidimensional space of parameters. This allows us to see a range of likely parameters that produce model outcomes consistent with animal data, determine if the distribution of likely parameters is uni- or multi-modal, as well as evaluate the significance and sensitivity of each parameter. This approach will allow for further analysis of the circuit, specifically, the function and significance of Ia feedback and Renshaw cells.
This work was supported by NSF DBI 2015317 as part of the NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation Networks for Neuroscience Program.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Müller, M.: Dynamic time warping. In: Müller, M. (ed.) Information Retrieval for Music and Motion, pp. 69–84. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74048-3_4
Alessandro, C., Rellinger, B.A., Barroso, F.O., Tresch, M.C.: Adaptation after vastus lateralis denervation in rats demonstrates neural regulation of joint stresses and strains. eLife 7, e38215 (2018). https://doi.org/10.7554/eLife.38215
Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. In: Cohen, I., Huang, Y., Chen, J., Benesty, J. (eds.) Noise Reduction in Speech Processing. Springer Topics in Signal Processing, pp. 1–4. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00296-0_5
Calvetti, D., Somersalo, E.: Sampling: the real thing. In: Calvetti, D., Somersalo, E. (eds.) Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing. STAMS, pp. 161–182. Springer, New York (2007). https://doi.org/10.1007/978-0-387-73394-4_9
Chen, Z.: An overview of Bayesian methods for neural spike train analysis. Comput. Intell. Neurosci. 2013, 1–17 (2013). https://doi.org/10.1155/2013/251905. http://www.hindawi.com/journals/cin/2013/251905/
Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: AnimatLab: a 3D graphics environment for neuromechanical simulations. J. Neurosci. Methods 187(2), 280–288 (2010). https://doi.org/10.1016/j.jneumeth.2010.01.005. https://linkinghub.elsevier.com/retrieve/pii/S0165027010000087
Delp, S.L., et al.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007). https://doi.org/10.1109/TBME.2007.901024
Deng, K., et al.: Biomechanical and sensory feedback regularize the behavior of different locomotor central pattern generators. Biomimetics 7(4), 226 (2022). https://doi.org/10.3390/biomimetics7040226. https://www.mdpi.com/2313-7673/7/4/226
Deng, K., et al.: Neuromechanical model of rat hindlimb walking with two-layer CPGs. Biomimetics 4(1), 21 (2019). https://doi.org/10.3390/biomimetics4010021. https://www.mdpi.com/2313-7673/4/1/21
Hultborn, H., Lindstrm, S., Wigstrm, H.: On the function of recurrent inhibition in the spinal cord. Exp. Brain Res. 37(2) (1979). https://doi.org/10.1007/BF00237722
Ikkala, A., Hämäläinen, P.: Converting Biomechanical Models from OpenSim to MuJoCo (2020). https://doi.org/10.48550/ARXIV.2006.10618
Ivashko, D., Prilutsky, B., Markin, S., Chapin, J., Rybak, I.: Modeling the spinal cord neural circuitry controlling cat hindlimb movement during locomotion. Neurocomputing 52–54, 621–629 (2003). https://doi.org/10.1016/S0925-2312(02)00832-9. https://linkinghub.elsevier.com/retrieve/pii/S0925231202008329
Jackson, C., Nourse, W.R.P., Heckman, C.J., Tresch, M., Quinn, R.D.: Canonical motor microcircuit for control of a rat hindlimb. In: Hunt, A., et al. (eds.) Biomimetic and Biohybrid Systems, vol. 13548, pp. 309–320. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20470-8_31
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, Perth, WA, Australia, vol. 4, pp. 1942–1948. IEEE (1995). https://doi.org/10.1109/ICNN.1995.488968. http://ieeexplore.ieee.org/document/488968/
Lee, K.Y., Park, J.: Application of particle swarm optimization to economic dispatch problem: advantages and disadvantages, pp. 188–192 (2006). https://doi.org/10.1109/PSCE.2006.296295
Lindén, H., Petersen, P.C., Vestergaard, M., Berg, R.W.: Movement is governed by rotational neural dynamics in spinal motor networks. Nature 610(7932), 526–531 (2022). https://doi.org/10.1038/s41586-022-05293-w. https://www.nature.com/articles/s41586-022-05293-w
MacKay-Lyons, M.: Central pattern generation of locomotion: a review of the evidence. Phys. Ther. 82(1), 69–83 (2002). https://doi.org/10.1093/ptj/82.1.69. https://academic.oup.com/ptj/article/82/1/69/2837028
McCrea, D.A., Rybak, I.A.: Organization of mammalian locomotor rhythm and pattern generation. Brain Res. Rev. 57(1), 134–146 (2008). https://doi.org/10.1016/j.brainresrev.2007.08.006. https://linkinghub.elsevier.com/retrieve/pii/S0165017307001798
Miasojedow, B., Moulines, E., Vihola, M.: An adaptive parallel tempering algorithm. J. Comput. Graph. Stat. 22(3), 649–664 (2013). https://doi.org/10.1080/10618600.2013.778779. http://www.tandfonline.com/doi/abs/10.1080/10618600.2013.778779
Nourse, W.R.P., Szczecinski, N.S., Quinn, R.D.: SNS-toolbox: a tool for efficient simulation of synthetic nervous systems. In: Hunt, A., et al. (eds.) Biomimetic and Biohybrid Systems, vol. 13548, pp. 32–43. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20470-8_4
Pratt, C.A., Jordan, L.M.: IA inhibitory interneurons and Renshaw cells as contributors to the spinal mechanisms of fictive locomotion. J. Neurophysiol. 57(1), 56–71 (1987). https://doi.org/10.1152/jn.1987.57.1.56. https://www.physiology.org/doi/10.1152/jn.1987.57.1.56
Rizzo, M.L., Székely, G.J.: Energy distance. Wiley Interdisc. Rev.: Comput. Stat. 8(1), 27–38 (2016). https://doi.org/10.1002/wics.1375. https://onlinelibrary.wiley.com/doi/10.1002/wics.1375
Rybak, I.A., Stecina, K., Shevtsova, N.A., McCrea, D.A.: Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation: modelling afferent control of locomotor pattern generation. J. Physiol. 577(2), 641–658 (2006). https://doi.org/10.1113/jphysiol.2006.118711. https://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2006.118711
Seth, A., et al.: OpenSim: simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput. Biol. 14(7), e1006223 (2018). https://doi.org/10.1371/journal.pcbi.1006223
Shadmehr, R., Wise, S.P.: The Computational Neurobiology of Reaching and Pointing: A Foundation for Motor Learning. Computational neuroscience, MIT Press, Cambridge (2005)
Spencer, S.E.: Accelerating adaptation in the adaptive Metropolis-Hastings random walk algorithm. Aust. New Zealand J. Stat. 63(3), 468–484 (2021). https://doi.org/10.1111/anzs.12344. https://onlinelibrary.wiley.com/doi/10.1111/anzs.12344
Stapor, P., et al.: PESTO: parameter EStimation TOolbox. Bioinformatics 34(4), 705–707 (2018). https://doi.org/10.1093/bioinformatics/btx676. https://academic.oup.com/bioinformatics/article/34/4/705/4562504
Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A functional subnetwork approach to designing synthetic nervous systems that control legged robot locomotion. Front. Neurorobot. 11, 37 (2017). https://doi.org/10.3389/fnbot.2017.00037. http://journal.frontiersin.org/article/10.3389/fnbot.2017.00037/full
Todorov, E., Erez, T., Tassa, Y.: MuJoCo: a physics engine for model-based control. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033 (2012). https://doi.org/10.1109/IROS.2012.6386109. ISSN 2153-0866
Vousden, W.D., Farr, W.M., Mandel, I.: Dynamic temperature selection for parallel tempering in Markov chain Monte Carlo simulations. Monthly Notices R. Astron. Soc. 455(2), 1919–1937 (2016). https://doi.org/10.1093/mnras/stv2422. https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stv2422
Wang, Y.C., et al.: Multimodal parameter spaces of a complex multi-channel neuron model. Front. Syst. Neurosci. 16 (2022). https://www.frontiersin.org/articles/10.3389/fnsys.2022.999531
Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12(1), 1–24 (1972). https://doi.org/10.1016/S0006-3495(72)86068-5. https://linkinghub.elsevier.com/retrieve/pii/S0006349572860685
Young, F.R., Chiel, H.J., Tresch, M.C., Heckman, C.J., Hunt, A.J., Quinn, R.D.: Analyzing modeled torque profiles to understand scale-dependent active muscle responses in the hip joint. Biomimetics 7(1), 17 (2022). https://doi.org/10.3390/biomimetics7010017. https://www.mdpi.com/2313-7673/7/1/17
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jackson, C. et al. (2023). Multimodal Parameter Inference for a Canonical Motor Microcircuit Controlling Rat Hindlimb Motion. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14158. Springer, Cham. https://doi.org/10.1007/978-3-031-39504-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-39504-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-39503-1
Online ISBN: 978-3-031-39504-8
eBook Packages: Computer ScienceComputer Science (R0)