Skip to main content

A Kernel Density Estimation Based Quality Metric for Quality Assessment of Obstetric Ultrasound Video

  • Conference paper
  • First Online:
Trustworthy Machine Learning for Healthcare (TML4H 2023)

Abstract

Simplified ultrasound scanning protocols (sweeps) have been developed to reduce the high skill required to perform a regular obstetric ultrasound examination. However, without automated quality assessment of the video, the utility of such protocols in clinical practice is limited. An automated quality assessment algorithm is proposed that applies an object detector to detect fetal anatomies within ultrasound videos. Kernel density estimation is applied to the bounding box annotations to estimate a probability density function of certain bounding box properties such as the spatial and temporal position during the sweeps. This allows quantifying how well the spatio-temporal position of anatomies in a sweep agrees with previously seen data as a quality metric. The new quality metric is compared to other metrics of quality such as the confidence of the object detector model. The source code is available at: https://github.com/kwon-j/KDE-UltrasoundQA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The probability density/peak PDF value could be used, but this skews most of the values to be very low - as shown in Appendix Fig. 1.

References

  1. Abu-Rustum, R.S., Ziade, M.F.: The 3-sweep approach: a standardized technique for fetal anatomic assessment in the limited resource setting. J. Fetal Med. 4(1), 25–30 (2017). https://doi.org/10.1007/s40556-017-0114-6

    Article  Google Scholar 

  2. Abuhamad, A., et al.: Standardized six-step approach to the performance of the focused basic obstetric ultrasound examination. Am. J. Perinatol. 33, 90–98 (2015). https://doi.org/10.1055/s-0035-1558828

    Article  Google Scholar 

  3. Amer, A., Dubois, E.: Fast and reliable structure-oriented video noise estimation. IEEE Trans. Circ. Syst. Video Technol. 15(1), 113–118 (2005)

    Article  Google Scholar 

  4. Crino, J., et al.: AIUM practice guideline for the performance of obstetric ultrasound examinations. J. Ultrasound Med. 32(6), 1083–1101 (2013)

    Article  Google Scholar 

  5. Darmstadt, G.L., et al.: 60 million non-facility births: who can deliver in community settings to reduce intrapartum-related deaths? Int. J. Gynecol. Obstet. 107, S89–S112 (2009)

    Article  Google Scholar 

  6. DeStigter, K.K., et al.: Low-cost teleradiology for rural ultrasound. In: 2011 IEEE Global Humanitarian Technology Conference, pp. 290–295. IEEE (2011)

    Google Scholar 

  7. Feng, X., Allebach, J.P.: Measurement of ringing artifacts in JPEG images. In: Digital Publishing, vol. 6076, pp. 74–83. SPIE (2006)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition, pp. 2366–2369. IEEE (2010)

    Google Scholar 

  10. Komatsu, M., et al.: Detection of cardiac structural abnormalities in fetal ultrasound videos using deep learning. Appl. Sci. 11(1), 371 (2021)

    Article  Google Scholar 

  11. Li, D., Jiang, T., Jiang, M.: Quality assessment of in-the-wild videos. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 2351–2359 (2019)

    Google Scholar 

  12. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  13. Lin, Z., et al.: Multi-task learning for quality assessment of fetal head ultrasound images. Med. Image Anal. 58, 101548 (2019)

    Article  Google Scholar 

  14. Marini, T.J., et al.: New ultrasound telediagnostic system for low-resource areas: pilot results from Peru. J. Ultrasound Med. 40(3), 583–595 (2021)

    Article  Google Scholar 

  15. Maru, D.S.R., Schwarz, R., Andrews, J., Basu, S., Sharma, A., Moore, C.: Turning a blind eye: the mobilization of radiology services in resource-poor regions. Glob. Health 6(1), 1–8 (2010)

    Article  Google Scholar 

  16. Marziliano, P., Dufaux, F., Winkler, S., Ebrahimi, T.: A no-reference perceptual blur metric. In: Proceedings of the International Conference on Image Processing, vol. 3, p. III. IEEE (2002)

    Google Scholar 

  17. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mollura, D., Lungren, M.P.: Radiology in Global Health, vol. 1. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-0604-4

    Book  Google Scholar 

  19. Mollura, D.J., Mazal, J., Everton, K.L., RAD-AID Conference Writing Group: White paper report of the 2012 RAD-AID conference on international radiology for developing countries: planning the implementation of global radiology. J. Am. Coll. Radiol. 10(8), 618–624 (2013)

    Google Scholar 

  20. Ngoya, P.S., Muhogora, W.E., Pitcher, R.D.: Defining the diagnostic divide: an analysis of registered radiological equipment resources in a low-income African country. Pan Afr. Med. J. 25, 99 (2016)

    Article  Google Scholar 

  21. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  22. Saeed, S.U., et al.: Learning image quality assessment by reinforcing task amenable data selection. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 755–766. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_58

    Chapter  Google Scholar 

  23. Salomon, L.J., et al.: ISUOG Practice Guidelines: ultrasound assessment of fetal biometry and growth. Ultrasound Obstet. Gynecol. 53, 715–723 (2019). https://doi.org/10.1002/uog.20272

    Article  Google Scholar 

  24. Salomon, L.J., et al.: Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet. Gynecol. 37(1), 116–126 (2011)

    Article  Google Scholar 

  25. Self, A., et al.: Developing clinical artificial intelligence for obstetric ultrasound to improve access in underserved regions: the computer-assisted low-cost point-of-care ultrasound (CALOPUS) study protocol. J. Med. Internet Res. 11(9), e37374 (2022). https://doi.org/10.2196/37374. https://www.researchprotocols.org/2022/0/e0/

  26. Thung, K.H., Raveendran, P.: A survey of image quality measures. In: 2009 International Conference for Technical Postgraduates (TECHPOS), pp. 1–4. IEEE (2009)

    Google Scholar 

  27. Toscano, M., et al.: Testing telediagnostic obstetric ultrasound in Peru: a new horizon in expanding access to prenatal ultrasound. BMC Pregnancy Childbirth 21, 1–13 (2021). https://doi.org/10.1186/s12884-021-03720-w

    Article  Google Scholar 

  28. Tu, Z., Lin, J., Wang, Y., Adsumilli, B., Bovik, A.C.: Adaptive debanding filter. IEEE Sig. Process. Lett. 27, 1715–1719 (2020)

    Article  Google Scholar 

  29. Turlach, B.A., et al.: Bandwidth selection in kernel density estimation: a rewiew. Technical report, Humboldt Universitaet Berlin (1993)

    Google Scholar 

  30. Wang, Y., Kum, S.U., Chen, C., Kokaram, A.: A perceptual visibility metric for banding artifacts. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 2067–2071. IEEE (2016)

    Google Scholar 

  31. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  32. Wang, Z., Bovik, A.C., Evan, B.L.: Blind measurement of blocking artifacts in images. In: Proceedings 2000 International Conference on Image Processing (Cat. No. 00CH37101), vol. 3, pp. 981–984. IEEE (2000)

    Google Scholar 

  33. WHO, UNICEF: World Health Organization and United Nations children’s fund. WHO/UNICEF joint database on SDG 3.1.2 skilled attendance at birth (2018)

    Google Scholar 

  34. WHO, UNICEF, UNFPA, World Bank Group: The United Nations Population Division: Trends in maternal mortality 2000 to 2017: estimates by WHO, UNICEF, UNFPA, World Bank Group and the United Nations population division (2019)

    Google Scholar 

  35. Wu, L., Cheng, J.Z., Li, S., Lei, B., Wang, T., Ni, D.: FUIQA: fetal ultrasound image quality assessment with deep convolutional networks. IEEE Trans. Cybern. 47(5), 1336–1349 (2017)

    Article  Google Scholar 

  36. Wu, Y., Kirillov, A., Massa, F., Lo, W.L., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2

  37. Zhao, H., et al.: Towards unsupervised ultrasound video clinical quality assessment with multi-modality data. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13434, pp. 228–237. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_22

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank the reviewers for their helpful feedback. Jong Kwon is supported by the EPSRC Center for Doctoral Training in Health Data Science (EP/S02428X/1). CALOPUS is supported by EPSRC GCRF grant (EP/R013853/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Kwon .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1281 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kwon, J., Jiao, J., Self, A., Alison Noble, J., Papageorghiou, A. (2023). A Kernel Density Estimation Based Quality Metric for Quality Assessment of Obstetric Ultrasound Video. In: Chen, H., Luo, L. (eds) Trustworthy Machine Learning for Healthcare. TML4H 2023. Lecture Notes in Computer Science, vol 13932. Springer, Cham. https://doi.org/10.1007/978-3-031-39539-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39539-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39538-3

  • Online ISBN: 978-3-031-39539-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics