Skip to main content

Geometry-Based End-to-End Segmentation of Coronary Artery in Computed Tomography Angiography

  • Conference paper
  • First Online:
Trustworthy Machine Learning for Healthcare (TML4H 2023)

Abstract

Coronary artery segmentation has great significance in providing morphological information and treatment guidance in clinics. However, the complex structures with tiny and narrow branches of the coronary artery bring it a great challenge. Limited by the low resolution and poor contrast of medical images, voxel-based segmentation methods could potentially lead to fragmentation of segmented vessels and surface voids are commonly found in the reconstructed mesh. Therefore, we propose a geometry-based end-to-end segmentation method for the coronary artery in computed tomography angiography. A U-shaped network is applied to extract image features, which are projected to mesh space, driving the geometry-based network to deform the mesh. Integrating the ability of geometric deformation, the proposed network could output mesh results of the coronary artery directly. Besides, the centerline-based approach is utilized to produce the ground truth of the mesh instead of the traditional marching cube method. Extensive experiments on our collected dataset CCA-520 demonstrate the feasibility and robustness of our method. Quantitatively, our model achieves Dice of 0.779 and HD of 0.299, exceeding other methods in our dataset. Especially, our geometry-based model generates an accurate, intact and smooth mesh of the coronary artery, devoid of any fragmentations of segmented vessels.

E. Yang—This work is done during an internship at Shanghai Artificial Intelligence Laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  2. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Meth. 18(2), 203–211 (2021)

    Article  Google Scholar 

  3. Kong, B., et al.: Learning tree-structured representation for 3D coronary artery segmentation. Comput. Med. Imaging Graph. 80, 101688 (2020)

    Article  Google Scholar 

  4. Lee, M.C.H., Petersen, K., Pawlowski, N., Glocker, B., Schaap, M.: TeTrIS: template transformer networks for image segmentation with shape priors. IEEE Trans. Med. Imaging 38(11), 2596–2606 (2019)

    Article  Google Scholar 

  5. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.W., Heng, P.A.: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37(12), 2663–2674 (2018)

    Article  Google Scholar 

  6. Song, A., et al.: Automatic coronary artery segmentation of CCTA images with an efficient feature-fusion-and-rectification 3D-UNet. IEEE J. Biomed. Health Inform. 26(8), 4044–4055 (2022)

    Article  Google Scholar 

  7. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 52–67 (2018)

    Google Scholar 

  8. Wang, Q., et al.: Geometric morphology based irrelevant vessels removal for accurate coronary artery segmentation. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 757–760 (2021)

    Google Scholar 

  9. Wickramasinghe, U., Remelli, E., Knott, G., Fua, P.: Voxel2Mesh: 3D mesh model generation from volumetric data. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 299–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_30

    Chapter  Google Scholar 

  10. Zhang, X., et al.: Progressive deep segmentation of coronary artery via hierarchical topology learning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 391–400. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_38

    Chapter  Google Scholar 

  11. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual U-Net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)

    Article  Google Scholar 

  12. Zhu, H., Song, S., Xu, L., Song, A., Yang, B.: Segmentation of coronary arteries images using spatio-temporal feature fusion network with combo loss. Cardiovasc. Eng. Technol. 13(3), 407–418 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijian Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, X., Xu, L., Yu, S., Xia, Q., Li, H., Zhang, S. (2023). Geometry-Based End-to-End Segmentation of Coronary Artery in Computed Tomography Angiography. In: Chen, H., Luo, L. (eds) Trustworthy Machine Learning for Healthcare. TML4H 2023. Lecture Notes in Computer Science, vol 13932. Springer, Cham. https://doi.org/10.1007/978-3-031-39539-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39539-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39538-3

  • Online ISBN: 978-3-031-39539-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics