Skip to main content

SWSPH: A Massively Parallel SPH Implementation for Hundred-Billion-Particle Simulation on New Sunway Supercomputer

  • Conference paper
  • First Online:
Euro-Par 2023: Parallel Processing (Euro-Par 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14100))

Included in the following conference series:

  • 1477 Accesses

Abstract

Fluid instability plays a fundamental role in the research of astrophysics, energy power, chemical industry and new materials. The Smoothed Particle Hydrodynamics (SPH) method is a useful tool for simulating interfacial flows such as multiphase flow, high-velocity impact, explosion phenomenon. However, SPH method harnesses an enormous amount of particles for accuracy, which consumes a lot of computing power. In this paper, we present a massively parallel SPH scheme on the new Sunway supercomputer, SWSPH. In order to take full advantage of large-scale heterogeneous many-core computing system, we propose a series of parallel strategies and optimization methods. Experiments show that SWSPH has the capability of handling hundred-billion-particles simulations of fluid instability phenomenon on 39 million cores with a performance of 76% parallel efficiency.

National Natural Science Foundation of China (Grant No. 62102389).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amicarelli, A., et al.: SPHERA v.9.0.0: a computational fluid dynamics research code, based on the smoothed particle hydrodynamics mesh-less method. Comput. Phys. Commun. 250, 107157 (2020). https://doi.org/10.1016/j.cpc.2020.107157

  2. Bertschinger, E., Gelb, J.M.: Cosmological N-body simulations. Comput. Phys. 5, 164–175 (1991). https://doi.org/10.1063/1.4822978

    Article  Google Scholar 

  3. Borrow, J., Bower, R.G., Draper, P.W., Gonnet, P., Schaller, M.: SWIFT: maintaining weak-scalability with a dynamic range of 10\(^{\text{4}}\) in time-step size to harness extreme adaptivity. CoRR abs/1807.01341 (2018). http://arxiv.org/abs/1807.01341

  4. Cavelan, A., Cabezón, R.M., Grabarczyk, M., Ciorba, F.M.: A smoothed particle hydrodynamics mini-app for exascale. In: PASC ’20: Platform for Advanced Scientific Computing Conference, Geneva, Switzerland, 29 June – 1 July 2020, pp. 11:1–11:11. ACM (2020). https://doi.org/10.1145/3394277.3401855

  5. Crespo, A.J.C., et al.: Dualsphysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput. Phys. Commun. 187, 204–216 (2015). https://doi.org/10.1016/j.cpc.2014.10.004

    Article  MATH  Google Scholar 

  6. Domínguez, J.M., Crespo, A.J.C., Valdez-Balderas, D., Rogers, B.D., Gómez-Gesteira, M.: New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters. Comput. Phys. Commun. 184(8), 1848–1860 (2013). https://doi.org/10.1016/j.cpc.2013.03.008

    Article  Google Scholar 

  7. Dong, W., Li, K., Kang, L., Quan, Z., Li, K.: Implementing molecular dynamics simulation on the Sunway TaihuLight system with heterogeneous many-core processors. Concurr. Comput. Practice Exp. 30, e4468 (2018)

    Google Scholar 

  8. Duan, X., Gao, P., Zhang, T., Zhang, M., Yang, G.: Redesigning LAMMPS for peta-scale and hundred-billion-atom simulation on Sunway TaihuLight. In: SC18: International Conference for High Performance Computing, Networking, Storage and Analysis (2019)

    Google Scholar 

  9. Fu, H., et al.: The Sunway TaihuLight supercomputer: system and applications. Sci. China Inf. Sci. 59(7), 072001:1–072001:16 (2016). https://doi.org/10.1007/s11432-016-5588-7

  10. Gómez-Gesteira, M., Crespo, A.J.C., Rogers, B.D., Dalrymple, R.A., Domínguez, J.M., Barreiro, A.: SPHysics - development of a free-surface fluid solver - part 2: efficiency and test cases. Comput. Geosci. 48, 300–307 (2012). https://doi.org/10.1016/j.cageo.2012.02.028

    Article  Google Scholar 

  11. Kuranz, C.C., et al.: How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants. Nat. Commun. 9(1), 1564 (2018)

    Article  Google Scholar 

  12. Lindl, J., Landen, O., Edwards, J., Moses, E.: Review of the national ignition campaign 2009–2012. Phys. Plasmas 21(2), 339–566 (2014)

    Article  Google Scholar 

  13. Liu, G.R., Liu, M.B.: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific (2003)

    Google Scholar 

  14. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astrophys. J. 8(12), 1013–1024 (1977)

    Google Scholar 

  15. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. MNRAS 181, 375–389 (1977)

    Article  MATH  Google Scholar 

  16. Schaller, M., Gonnet, P., Chalk, A.B.G., Draper, P.W.: Swift: Using task-based parallelism, fully asynchronous communication, and graph partition-based domain decomposition for strong scaling on more than 100,000 cores. ACM (2016)

    Google Scholar 

  17. Yang, Q., Chang, J., Bao, W.: Richtmyer-Meshkov instability induced mixing enhancement in the scramjet combustor with a central strut. Adv. Mech. Eng. 6, 614189 (2014)

    Article  Google Scholar 

  18. Zukas, J.A.: High Velocity Impact Dynamics. Wiley-Interscience, Hoboken (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junshi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z. et al. (2023). SWSPH: A Massively Parallel SPH Implementation for Hundred-Billion-Particle Simulation on New Sunway Supercomputer. In: Cano, J., Dikaiakos, M.D., Papadopoulos, G.A., Pericàs, M., Sakellariou, R. (eds) Euro-Par 2023: Parallel Processing. Euro-Par 2023. Lecture Notes in Computer Science, vol 14100. Springer, Cham. https://doi.org/10.1007/978-3-031-39698-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39698-4_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39697-7

  • Online ISBN: 978-3-031-39698-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics