Skip to main content

Asymptotic Performance and Energy Consumption of SLACK

  • Conference paper
  • First Online:
Euro-Par 2023: Parallel Processing (Euro-Par 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14100))

Included in the following conference series:

  • 2013 Accesses

Abstract

Scheduling n independent tasks onto m identical processors in order to minimize the makespan has been widely studied. As an alternative to classic heuristics, the \(\textsc {Slack}\) algorithm groups tasks by packs of m tasks of similar execution times, and schedules first the packs with the largest differences. It turns out to be very performant in practice, but only few studies have been conducted on its theoretical properties. We derive novel analytical results for \(\textsc {Slack}\), and in particular, we study the performance of this algorithm from an asymptotical point of view, under the assumption that the execution time of the tasks follow a given probability distribution. The study is building on a comparison of the most heavily loaded machine compared to the least loaded one. Furthermore, we extend the results when the objective is to minimize the energy consumption rather than the makespan, since reducing the energy consumption of the computing centers is an ever-growing concern for economical and ecological reasons. Finally, we perform extensive simulations to empirically assess the performance of the algorithms with both synthetic and realistic execution time distributions.

*This work has been supported by the EIPHI Graduate School (contract ANR-17-EURE-0002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are openly available in figshare [7].

References

  1. Bairamov, I., Berred, A., Stepanov, A.: Limit results for ordered uniform spacings. Stat. Pap. 51(1), 227–240 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bambagini, M., Marinoni, M., Aydin, H., Buttazzo, G.: Energy-aware scheduling for real-time systems: a survey. ACM Trans. Embed. Comput. Syst. 15(1), 1–34 (2016)

    Article  Google Scholar 

  3. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature. J. ACM 54(1), 1–39 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benini, L., Bogliolo, A., De Micheli, G.: A survey of design techniques for system-level dynamic power management. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 8(3), 299–316 (2000)

    Google Scholar 

  5. Benoit, A., Canon, L.-C., Elghazi, R., Héam, P.-C.: Update on the asymptotic optimality of LPT. In: Sousa, L., Roma, N., Tomás, P. (eds.) Euro-Par 2021. LNCS, vol. 12820, pp. 55–69. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85665-6_4

    Chapter  Google Scholar 

  6. Benoit, A., Canon, L.C., Elghazi, R., Héam, P.C.: Asymptotic Performance and Energy Consumption of SLACK. Research report 9501, Inria (2023). https://graal.ens-lyon.fr/~abenoit/papers/RR-9501.pdf

  7. Benoit, A., Canon, L-C., Elghazi, R., Héam, P-C.: Artifact and instructions to generate experimental results (2023). https://doi.org/10.6084/m9.figshare.23579472

  8. Coffman, E.G., Jr., Lueker, G.S., Kan, R.A.H.G.: Asymptotic methods in the probabilistic analysis of sequencing and packing heuristics. Manage. Sci. 34(3), 266–290 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Della Croce, F., Scatamacchia, R.: The longest processing time rule for identical parallel machines revisited. J. Schedul. 23(2), 163–176 (2018). https://doi.org/10.1007/s10951-018-0597-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Czarnul, P., Proficz, J., Krzywaniak, A.: Energy-aware high-performance computing: survey of state-of-the-art tools, techniques, and environments. Sci. Prog. 2019 (2019)

    Google Scholar 

  11. Devroye, L.: Laws of the iterated logarithm for order statistics of uniform spacings. Ann. Probab. 9(5), 860–867 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Devroye, L.: The largest exponential spacing. Utilitas Math. 25, 303–313 (1984)

    MathSciNet  MATH  Google Scholar 

  13. Feitelson, D.G., Tsafrir, D., Krakov, D.: Experience with using the parallel workloads archive. J. Parallel Distrib. Comp. 74(10), 2967–2982 (2014)

    Article  Google Scholar 

  14. Frenk, J.B.G., Kan, A.H.G.R.: The rate of convergence to optimality of the LPT rule. Discr. Appl. Math. 14(2), 187–197 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discr. Math. 5, 287–326 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17(2), 416–429 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin, X., Wang, Y., Xie, Q., Pedram, M.: Task scheduling with dynamic voltage and frequency scaling for energy minimization in the mobile cloud computing environment. IEEE Trans. Serv. Comput. 8(2), 175–186 (2014)

    Article  Google Scholar 

  18. Loulou, R.: Tight bounds and probabilistic analysis of two heuristics for parallel processor scheduling. Math. Oper. Res. 9(1), 142–150 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Piersma, N., Romeijn, H.E.: Parallel machine scheduling: a probabilistic analysis. Naval Res. Logistics (NRL) 43(6), 897–916 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pinelis, I.: Order statistics on the spacings between order statistics for the uniform distribution. arXiv preprint arXiv:1909.06406 (2019)

  21. Thakkar, A., Chaudhari, K., Shah, M.: A comprehensive survey on energy-efficient power management techniques. Procedia Comput. Sci. 167, 1189–1199 (2020)

    Article  Google Scholar 

  22. Weiser, M., Welch, B., Demers, A., Shenker, S.: Scheduling for reduced CPU energy. In: Imielinski, T., Korth, H.F. (eds.) Mobile Computing. The Kluwer International Series in Engineering and Computer Science, vol. 353, pp. 449–471. Springer, Boston (1994). https://doi.org/10.1007/978-0-585-29603-6_17

    Chapter  Google Scholar 

  23. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In: Proceedings of the IEEE 36th Annual Foundations of Computer Science, pp. 374–382 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Elghazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benoit, A., Canon, LC., Elghazi, R., Héam, PC. (2023). Asymptotic Performance and Energy Consumption of SLACK. In: Cano, J., Dikaiakos, M.D., Papadopoulos, G.A., Pericàs, M., Sakellariou, R. (eds) Euro-Par 2023: Parallel Processing. Euro-Par 2023. Lecture Notes in Computer Science, vol 14100. Springer, Cham. https://doi.org/10.1007/978-3-031-39698-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39698-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39697-7

  • Online ISBN: 978-3-031-39698-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics