Skip to main content

Maximizing Signal to Interference Noise Ratio for Massive MIMO: A Stochastic Neurodynamic Approach

  • Conference paper
  • First Online:
Mobile Web and Intelligent Information Systems (MobiWIS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13977))

  • 472 Accesses

Abstract

In this paper, we consider the problem of maximizing the worst user signal to interference noise ratio (SINR) for massive multiple input multiple output (MaMIMO). We reformulate the nonlinear optimization model as a joint chance-constrained geometric program. We derive then a deterministic equivalent for the obtained stochastic problem. Based on the optimality conditions, we propose a neurodynamic approach for the optimization problem. We show that the proposal dynamical neural network is convergent and stable in the sense of Lyapunov. Our numerical results indicate that our approach is robust and outperforms a state-of-art convex approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin, X., Xu, F., Fu, J., Wang, Y.: Resource allocation for TDD cell-free massive MIMO systems. Electronics 11(12), 1914 (2022). https://doi.org/10.3390/electronics11121914. https://www.mdpi.com/2079-9292/11/12/1914

  2. Yin, H., Wang, H., Liu, Y., Gesbert, D.: Dealing with the mobility problem of massive MIMO using extended Prony’s method. In: ICC 2020–2020 IEEE International Conference on Communications (ICC), pp. 1–6 (2020). https://doi.org/10.1109/ICC40277.2020.9149225

  3. Dikmen, O., Kulac, S.: Power allocation algorithms for massive MIMO system. Avrupa Bilim ve Teknoloji Dergisi (28), 444–452 (2021). https://doi.org/10.31590/ejosat.1005325

  4. Salah, I., Mourad, M., Rahouma, K., Hussein, A.: Energy efficiency optimization in adaptive massive MIMO networks for 5G applications using genetic algorithm. Opt. Quant. Electron. 54, 125 (2022). https://doi.org/10.1007/s11082-021-03507-5

    Article  Google Scholar 

  5. Adasme, P., Soto, I., Juan, E.S., Seguel, F., Firoozabadi, A.D.: Maximizing signal to interference noise ratio for massive MIMO: a mathematical programming approach. In: 2020 South American Colloquium on Visible Light Communications (SACVC), pp. 1–6 (2020). https://doi.org/10.1109/SACVLC50805.2020.9129889

  6. Mei, W., Zhang, R.: Performance analysis and user association optimization for wireless network aided by multiple intelligent reflecting surfaces. IEEE Trans. Commun. 69(9), 6296–6312 (2021). https://doi.org/10.1109/TCOMM.2021.3087620

    Article  Google Scholar 

  7. Duffin, R.J., Peterson, E.L., Zener, C.M.: Geometric Programming: Theory and Application. Wiley, New York (1967)

    MATH  Google Scholar 

  8. Hoburg, W., Abbeel, P.: Geometric programming for aircraft design optimization. AIAA J. 52(11), 2414–2426 (2014). https://doi.org/10.2514/1.J052732

    Article  Google Scholar 

  9. Chiang, M.: Geometric programming for Communication Systems. Now Publishers, Boston (2005)

    Book  MATH  Google Scholar 

  10. Boyd, S.P., Kim, S.-J., Patil, D.D., Horowitz, M.A.: Digital circuit optimization via geometric programming. Oper. Res. 53(6), 899–932 (2005). http://www.jstor.org/stable/25146929

  11. Scott, C.H., Jefferson, T.R.: A generalisation of geometric programming with an application to information theory. Inf. Sci. 12, 263–269 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. You, B., Esche, E., Weigert, J., Repke, J.-U.: Joint chance constraint approach based on data-driven models for optimization under uncertainty applied to the williams-otto process. In: Türkay, M., Gani, R. (eds.) 31st European Symposium on Computer Aided Process Engineering, Volume 50 of Computer Aided Chemical Engineering, pp. 523–528. Elsevier (2021). https://doi.org/10.1016/B978-0-323-88506-5.50083-8. https://www.sciencedirect.com/science/article/pii/B9780323885065500838

  13. Ono, M., Kuwata, Y., Balaram, J.: Joint chance-constrained dynamic programming. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 1915–1922 (2012). https://doi.org/10.1109/CDC.2012.6425906

  14. Adasme, P., Lisser, A.: A stochastic geometric programming approach for power allocation in wireless networks. Wireless Netw. 29, 2235–2250 (2023). https://doi.org/10.1007/s11276-023-03295-8

    Article  Google Scholar 

  15. Tassouli, S., Lisser, A.: A neural network approach to solve geometric programs with joint probabilistic constraints. Math. Comput. Simul. 205, 765–777 (2023). https://doi.org/10.1016/j.matcom.2022.10.025. https://www.sciencedirect.com/science/article/pii/S0378475422004384

  16. Jiang, M., Meng, Z., Shen, R.: Partial exactness for the penalty function of biconvex programming. Entropy 23(2), 132 (2021). https://doi.org/10.3390/e23020132. https://www.mdpi.com/1099-4300/23/2/132

  17. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-642-02431-3

    Book  MATH  Google Scholar 

  18. Liu, J., Lisser, A., Chen, Z.: Stochastic geometric optimization with joint probabilistic constraints. Oper. Res. Lett. 44(5), 687–691 (2016). https://doi.org/10.1016/j.orl.2016.08.002

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siham Tassouli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tassouli, S., Lisser, A. (2023). Maximizing Signal to Interference Noise Ratio for Massive MIMO: A Stochastic Neurodynamic Approach. In: Younas, M., Awan, I., Grønli, TM. (eds) Mobile Web and Intelligent Information Systems. MobiWIS 2023. Lecture Notes in Computer Science, vol 13977. Springer, Cham. https://doi.org/10.1007/978-3-031-39764-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39764-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39763-9

  • Online ISBN: 978-3-031-39764-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics