Skip to main content

Medical Test Results Management System Based on Blockchain, Smart Contracts, and NFT Technologies

  • Conference paper
  • First Online:
Mobile Web and Intelligent Information Systems (MobiWIS 2023)

Abstract

The current diagnostic and treatment process is highly dependent on the results of medical tests (i.e., current and past addiction tests). This information directly affects the doctor’s decisions regarding the treatment regimen for each disease and the patient’s condition. However, current centralized storage methods pose a major barrier for patients (i.e., changing medical facilities). Medical information is extremely private and affects the patient directly if left unprotected, so it is constrained to retrieve this information from another treatment facility. Many previous approaches have proposed a decentralized storage model based on blockchain, smart contracts technologies to solve the above problems. However, the security of personal information is a potential risk for the above systems due to the openness of data stored on the chain. Based on the above limitations, we propose the NFT combination model to create document sets based on test results for easy sharing by patients in the medical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.healthbank.coop.

  2. 2.

    https://www.factom.com/company-updates/healthnautica-factom-announce-partnership/.

  3. 3.

    We do not deploy smart contracts on ETH because the execution fee of smart contracts is too high.

  4. 4.

    https://www.healthbank.coop/2018/10/30/healthbank-creates-the-first-patient-centric-healthcare-trust-ecosystem/.

  5. 5.

    https://www.factom.com/company-updates/healthnautica-factom-announce-partnership/.

  6. 6.

    https://iryo.network/iryo_whitepaper.pdf.

  7. 7.

    https://github.com/bnb-chain/whitepaper/blob/master/WHITEPAPER.md.

  8. 8.

    https://polygon.technology/lightpaper-polygon.pdf.

  9. 9.

    https://whitepaper.io/document/438/fantom-whitepaper.

  10. 10.

    https://celo.org/papers/whitepaper.

  11. 11.

    Implementation of theme models our release at 11/24/2022, 8:44:53 AM UTC.

  12. 12.

    https://testnet.bscscan.com/address/0xafa3888d1dfbfe957b1cd68c36ede4991e104a53.

  13. 13.

    https://mumbai.polygonscan.com/address/0xd9ee80d850ef3c4978dd0b099a45a559fd7c5ef4.

  14. 14.

    https://testnet.ftmscan.com/address/0x4a2573478c67a894e32d806c8dd23ee8e26f7847.

  15. 15.

    https://explorer.celo.org/alfajores/address/0x4a2573478C67a894E32D806c8Dd23EE8E26f7847/transactions.

  16. 16.

    Our observation time is 12:00PM - 11/26/2022.

References

  1. Abou Jaoude, J., Saade, R.G.: Blockchain applications-usage in different domains. IEEE Access 7, 45360–45381 (2019)

    Article  Google Scholar 

  2. Ahmad, R.W., et al.: The role of blockchain technology in telehealth and telemedicine. Int. J. Med. Inform. 148, 104399 (2021)

    Article  Google Scholar 

  3. Barua, M., et al.: ESPAC: enabling security and patient-centric access control for eHealth in cloud computing. Int. J. Secur. Netw. 6(2–3), 67–76 (2011)

    Article  Google Scholar 

  4. Chan, K.S., Fowles, J.B., Weiner, J.P.: Electronic health records and the reliability and validity of quality measures: a review of the literature. Med. Care Res. Rev. 67(5), 503–527 (2010)

    Article  Google Scholar 

  5. Chen, L., Hoang, D.B.: Novel data protection model in healthcare cloud. In: 2011 IEEE International Conference on High Performance Computing and Communications, pp. 550–555. IEEE (2011)

    Google Scholar 

  6. Chen, Z., et al.: A blockchain-based preserving and sharing system for medical data privacy. Future Gener. Comput. Syst. 124, 338–350 (2021)

    Article  Google Scholar 

  7. Du, M., et al.: Supply chain finance innovation using blockchain. IEEE Trans. Eng. Manag. 67(4), 1045–1058 (2020)

    Article  Google Scholar 

  8. Egorov, M., Wilkison, M., Nuñez, D.: NuCypher KMS: decentralized key management system. arXiv preprint arXiv:1707.06140 (2017)

  9. Ha, X.S., et al.: DeM-CoD: novel access-control-based cash on delivery mechanism for decentralized marketplace. In: IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications, pp. 71–78. IEEE (2020)

    Google Scholar 

  10. Ha, X.S., Le, T.H., Phan, T.T., Nguyen, H.H.D., Vo, H.K., Duong-Trung, N.: Scrutinizing trust and transparency in cash on delivery systems. In: Wang, G., Chen, B., Li, W., Di Pietro, R., Yan, X., Han, H. (eds.) SpaCCS 2020. LNCS, vol. 12382, pp. 214–227. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68851-6_15

    Chapter  Google Scholar 

  11. Hoang, N.M., Son, H.X.: A dynamic solution for fine-grained policy conflict resolution. In: Proceedings of the 3rd International Conference on Cryptography, Security and Privacy, pp. 116–120 (2019)

    Google Scholar 

  12. Kassab, M., et al.: Exploring research in blockchain for healthcare and a roadmap for the future. IEEE Trans. Emerg. Top. Comput. 9(4), 1835–1852 (2019)

    Article  Google Scholar 

  13. Kyrarini, M., et al.: A survey of robots in healthcare. Technologies 9(1), 8 (2021)

    Article  Google Scholar 

  14. Le, H.T., et al.: Patient-chain: patient-centered healthcare system a blockchain-based technology in dealing with emergencies. In: Shen, H., et al. (eds.) PDCAT 2021. LNCS, vol. 13148, pp. 576–583. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96772-7_54

    Chapter  Google Scholar 

  15. Le, N.T.T., et al.: Assuring non-fraudulent transactions in cash on delivery by introducing double smart contracts. Int. J. Adv. Comput. Sci. Appl. 10(5), 677–684 (2019)

    Google Scholar 

  16. Madine, M.M., et al.: Blockchain for giving patients control over their medical records. IEEE Access 8, 193102–193115 (2020)

    Article  Google Scholar 

  17. Makubalo, T., Scholtz, B., Tokosi, T.O.: Blockchain technology for empowering patient-centred healthcare: a pilot study. In: Hattingh, M., Matthee, M., Smuts, H., Pappas, I., Dwivedi, Y.K., Mäntymäki, M. (eds.) I3E 2020. LNCS, vol. 12066, pp. 15–26. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44999-5_2

    Chapter  Google Scholar 

  18. Misbhauddin, M., et al.: MedAccess: a scalable architecture for blockchain-based health record management. In: 2020 2nd International Conference on Computer and Information Sciences (ICCIS), pp. 1–5. IEEE (2020)

    Google Scholar 

  19. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus. Rev. 21260 (2008)

    Google Scholar 

  20. Patel, V.: A framework for secure and decentralized sharing of medical imaging data via blockchain consensus. Health Inform. J. 25(4), 1398–1411 (2019)

    Article  Google Scholar 

  21. Patra, M.R., Das, R.K., Padhy, R.P.: CRHIS: cloud based rural healthcare information system. In: Proceedings of the 6th International Conference on Theory and Practice of Electronic Governance, pp. 402–405 (2012)

    Google Scholar 

  22. Quoc, K.L., et al.: SSSB: an approach to insurance for cross-border exchange by using smart contracts. In: Awan, I., Younas, M., Poniszewska-Marańda, A. (eds.) MobiWIS 2022. LNCS, vol. 13475, pp. 179–192. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14391-5_14

    Chapter  Google Scholar 

  23. Rolim, C.O., et al.: A cloud computing solution for patient’s data collection in health care institutions. In: 2010 Second International Conference on eHealth, Telemedicine, and Social Medicine, pp. 95–99. IEEE (2010)

    Google Scholar 

  24. Son, H.X., Dang, T.K., Massacci, F.: REW-SMT: a new approach for rewriting XACML request with dynamic big data security policies. In: Wang, G., Atiquzzaman, M., Yan, Z., Choo, K.-K.R. (eds.) SpaCCS 2017. LNCS, vol. 10656, pp. 501–515. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72389-1_40

    Chapter  Google Scholar 

  25. Son, H.X., Hoang, N.M.: A novel attribute-based access control system for fine-grained privacy protection. In: Proceedings of the 3rd International Conference on Cryptography, Security and Privacy, pp. 76–80 (2019)

    Google Scholar 

  26. Son, H.X., Nguyen, M.H., Vo, H.K., Nguyen, T.P.: Toward an privacy protection based on access control model in hybrid cloud for healthcare systems. In: Martínez Álvarez, F., Troncoso Lora, A., Sáez Muñoz, J.A., Quintián, H., Corchado, E. (eds.) CISIS/ICEUTE -2019. AISC, vol. 951, pp. 77–86. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-20005-3_8

    Chapter  Google Scholar 

  27. Su, C.J., Wu, C.Y.: JADE implemented mobile multi-agent based, distributed information platform for pervasive health care monitoring. Appl. Soft Comput. 11(1), 315–325 (2011)

    Article  Google Scholar 

  28. Thi, Q.N.T., Dang, T.K., Van, H.L., Son, H.X.: Using JSON to specify privacy preserving-enabled attribute-based access control policies. In: Wang, G., Atiquzzaman, M., Yan, Z., Choo, K.-K.R. (eds.) SpaCCS 2017. LNCS, vol. 10656, pp. 561–570. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72389-1_44

    Chapter  Google Scholar 

  29. Xuan, S.H., et al.: Rew-XAC: an approach to rewriting request for elastic ABAC enforcement with dynamic policies. In: 2016 International Conference on Advanced Computing and Applications (ACOMP), pp. 25–31. IEEE (2016)

    Google Scholar 

  30. Zhang, P., et al.: FHIRChain: applying blockchain to securely and scalably share clinical data. Comput. Struct. Biotechnol. J. 16, 267–278 (2018)

    Article  Google Scholar 

  31. Zhang, Y., et al.: Health-CPS: healthcare cyber-physical system assisted by cloud and big data. IEEE Syst. J. 11(1), 88–95 (2015)

    Article  MathSciNet  Google Scholar 

  32. Zyskind, G., et al.: Decentralizing privacy: using blockchain to protect personal data. In: 2015 IEEE Security and Privacy Workshops, pp. 180–184. IEEE (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hieu T. Nguyen or Huong H. Luong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, H.T. et al. (2023). Medical Test Results Management System Based on Blockchain, Smart Contracts, and NFT Technologies. In: Younas, M., Awan, I., Grønli, TM. (eds) Mobile Web and Intelligent Information Systems. MobiWIS 2023. Lecture Notes in Computer Science, vol 13977. Springer, Cham. https://doi.org/10.1007/978-3-031-39764-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39764-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39763-9

  • Online ISBN: 978-3-031-39764-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics