Skip to main content

Conditional Obligations in Justification Logic

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13923))

  • 211 Accesses

Abstract

This paper presents a justification counterpart for dyadic deontic logic, which is often argued to be better than Standard Deontic Logic at representing conditional and contrary-to-duty obligations, such as those exemplified by the notorious Chisholm’s puzzle. We consider the alethic-deontic system (E) and present the explicit version of this system (JE) by replacing the alethic Box-modality with proof terms and the dyadic deontic Circ-modality with justification terms. The explicit representation of strong factual detachment (SFD) is given and finally soundness and completeness of the system (JE) with respect to basic models and preference models is established.

F. Faroldi was supported by the Ambizione grant PZ00P1\(\_\)201906, A. Rohani and T. Studer were supported by the Swiss National Science Foundation grant 200020\(\_\)184625.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Artemov, S.: Explicit provability and constructive semantics. BSL 7(1), 1–36 (2001)

    Google Scholar 

  2. Artemov, S.: Justified common knowledge. TCS 357(1–3), 4–22 (2006). https://doi.org/10.1016/j.tcs.2006.03.009

    Article  Google Scholar 

  3. Artemov, S.: The ontology of justifications in the logical setting. Stud. Log. 100(1–2), 17–30 (2012). https://doi.org/10.1007/s11225-012-9387-x

    Article  Google Scholar 

  4. Artemov, S., Fitting, M.: Justification Logic: Reasoning with Reasons. Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/9781108348034

    Book  Google Scholar 

  5. Bucheli, S., Kuznets, R., Studer, T.: Justifications for common knowledge. Appl. Non-Classical Log. 21(1), 35–60 (2011). https://doi.org/10.3166/JANCL.21.35-60

    Article  Google Scholar 

  6. Chisholm, R.M.: Contrary-to-duty imperatives and deontic logic. Analysis 24(2), 33–36 (1963). https://doi.org/10.1093/analys/24.2.33

    Article  Google Scholar 

  7. Danielsson, S.: Preference and Obligation. Studies in the Logic of Ethics. Filosofiska föreningen (1968)

    Google Scholar 

  8. Faroldi, F., Ghari, M., Lehmann, E., Studer, T.: Impossible and conflicting obligations in justification logic. In: Marra, A., Liu, F., Portner, P., Van De Putte, F. (eds.) Proceedings of DEON 2020 (2020)

    Google Scholar 

  9. Faroldi, F.L.G.: Deontic modals and hyperintensionality. Log. J. IGPL 27, 387–410 (2019). https://doi.org/10.1093/jigpal/jzz011

    Article  Google Scholar 

  10. Faroldi, F.L.G.: Hyperintensionality and Normativity. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-03487-0

    Book  Google Scholar 

  11. Faroldi, F.L.G., Ghari, M., Lehmann, E., Studer, T.: Consistency and permission in deontic justification logic. J. Log. Comput. (2022). https://doi.org/10.1093/logcom/exac045

    Article  Google Scholar 

  12. Faroldi, F.L.G., Protopopescu, T.: All-things-considered ought via reasons in justification logic (2018). Preprint

    Google Scholar 

  13. Faroldi, F.L.G., Protopopescu, T.: A hyperintensional logical framework for deontic reasons. Log. J. IGPL 27, 411–433 (2019). https://doi.org/10.1093/jigpal/jzz013

    Article  Google Scholar 

  14. Fitting, M.: The logic of proofs, semantically. APAL 132(1), 1–25 (2005). https://doi.org/10.1016/j.apal.2004.04.009

    Article  Google Scholar 

  15. van Fraassen, B.C.: The logic of conditional obligation. J. Philos. Log. 1(3/4), 417–438 (1972)

    Article  Google Scholar 

  16. Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van der Torre, L.: Handbook of Deontic Logic and Normative System, vol. 2. College Publications (2021)

    Google Scholar 

  17. Hansson, B.: An analysis of some deontic logics. Noûs 3(4), 373–398 (1969)

    Article  Google Scholar 

  18. Kokkinis, I., Maksimović, P., Ognjanović, Z., Studer, T.: First steps towards probabilistic justification logic. Log. J. IGPL 23(4), 662–687 (2015). https://doi.org/10.1093/jigpal/jzv025

    Article  Google Scholar 

  19. Kuznets, R., Studer, T.: Logics of Proofs and Justifications. Studies in Logic. College Publications (2019)

    Google Scholar 

  20. Kuznets, R., Marin, S., Straßburger, L.: Justification logic for constructive modal logic. J. Appl. Log. 8, 2313–2332 (2021)

    Google Scholar 

  21. Kuznets, R., Studer, T.: Justifications, ontology, and conservativity. In: Bolander, T., Braüner, T., Ghilardi, S., Moss, L. (eds.) Advances in Modal Logic, vol. 9, pp. 437–458. College Publications (2012)

    Google Scholar 

  22. Lehmann, E., Studer, T.: Subset models for justification logic. In: Iemhoff, R., Moortgat, M., de Queiroz, R. (eds.) WoLLIC 2019. LNCS, vol. 11541, pp. 433–449. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-59533-6_26

    Chapter  Google Scholar 

  23. Lewis, D.K.: Counterfactuals. Blackwell, Cambridge (1973)

    Google Scholar 

  24. Lewis, D.K.: Semantic analyses for dyadic deontic logic. In: Stenlund, S., Henschen-Dahlquist, A.M., Lindahl, L., Nordenfelt, L., Odelstad, J. (eds.) Logical Theory and Semantic Analysis. Synthese Library, vol. 63, pp. 1–14. Springer, Dordrecht (1974)

    Google Scholar 

  25. Parent, X., van der Torre, L.: Introduction to Deontic Logic and Normative Systems. Texts in Logic and Reasoning. College Publications (2018)

    Google Scholar 

  26. Parent, X.: A complete axiom set for Hansson’s deontic logic DSDL2. Log. J. IGPL 18(3), 422–429 (2010). https://doi.org/10.1093/jigpal/jzp050

    Article  Google Scholar 

  27. Parent, X.: Maximality vs. optimality in dyadic deontic logic. J. Philos. Log. 43(6), 1101–1128 (2013). https://doi.org/10.1007/s10992-013-9308-0

    Article  Google Scholar 

  28. Parent, X.: Completeness of Åqvist’s systems E and F. Rev. Symb. Log. 8(1), 164–177 (2015). https://doi.org/10.1017/S1755020314000367

    Article  Google Scholar 

  29. Renne, B.: Dynamic epistemic logic with justification. Ph.D. thesis, City University of New York (2008)

    Google Scholar 

  30. Rohani, A., Studer, T.: Explicit non-normal modal logic. In: Silva, A., Wassermann, R., de Queiroz, R. (eds.) WoLLIC 2021. LNCS, vol. 13038, pp. 64–81. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88853-4_5

    Chapter  Google Scholar 

  31. Rohani, A., Studer, T.: Explicit non-normal modal logic. J. Log. Comput. (in print)

    Google Scholar 

  32. Studer, T.: Decidability for some justification logics with negative introspection. JSL 78(2), 388–402 (2013). https://doi.org/10.2178/jsl.7802030

    Article  Google Scholar 

  33. Xu, C., Wang, Y., Studer, T.: A logic of knowing why. Synthese 198, 1259–1285 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atefeh Rohani .

Editor information

Editors and Affiliations

A Soundness and Completeness with Respect to Basic Models

A Soundness and Completeness with Respect to Basic Models

Theorem 4

System \(\textsf{JE}_{\textsf{CS}}\) is sound with respect to the class of all basic models.

Proof

The proof is by induction on the length of derivations in \(\textsf{JE}_{\textsf{CS}}\). For an arbitrary basic model \(\varepsilon \), soundness of the propositional axioms is trivial and soundness of \(\textsf{S5}\) axioms \(\textsf{j}, \textsf{jt}, \textsf{j4}, \textsf{j5}, \mathsf {j+}\) immediately follows from the definition of basic evaluation and factivity. We just check the cases for the axioms containing justification terms. Suppose \(\textsf{JE}_{\textsf{CS}}\vdash F\) and F is an instance of:

  • (COK): Suppose \(\varepsilon \Vdash [t] (B \rightarrow C/A)\) and \(\varepsilon \Vdash [s] (B/A)\). Thus we have

    $$ (B \rightarrow C ,A) \in \varepsilon (t) \quad \text {and}\quad (B,A) \in \varepsilon (s). $$

    By the definition of basic model, we have \(\varepsilon (t) \ominus \varepsilon (s) \subseteq \varepsilon (t \cdot s)\) and as a result \((C,A) \in \varepsilon (t \cdot s)\), which means \(\varepsilon \Vdash [t \cdot s](C/A)\).

  • (Nec): Suppose \(\varepsilon \Vdash (\lambda : A)\). Thus \(A \in \varepsilon (\lambda )\). By the definition of \(\textsf{n}(\varepsilon (\lambda ))\) we have \((A,B) \in \textsf{n}(\varepsilon (\lambda ))\) for any \(B \in \textsf{Fm}\) and by the definition of basic evaluation \(\textsf{n}(\varepsilon (\lambda )) \subseteq \varepsilon (\textsf{n}(\lambda )) \), so \((A,B) \in \varepsilon (\textsf{n}(\lambda ))\), which means \(\varepsilon \Vdash [\textsf{n}(\lambda )] (A/B) \).

  • (Ext): Suppose \(\varepsilon \Vdash \lambda : (A \leftrightarrow B)\), so \((A \leftrightarrow B) \in \varepsilon (\lambda )\). Since \(\varepsilon (\lambda ) \odot \varepsilon (t) \subseteq \varepsilon (\textsf{e}(t, \lambda ))\), we have \((C,B) \in \varepsilon (\textsf{e}(t, \lambda )) \) if \((C,A) \in \varepsilon (t)\). Hence \(\varepsilon \Vdash ( [t] (C/A) \rightarrow [\textsf{e}(t, \lambda )] (C/B))\).

  • (Sh): Suppose \(\varepsilon \Vdash [t] (C/A \wedge B)\), then \((C,(A \wedge B)) \in \varepsilon (t)\). By definition of \(\nabla (\varepsilon (t))\) we have \((B \rightarrow C , A) \in \nabla (\varepsilon (t))\) and by definition of basic models, \(\nabla \varepsilon (t) \subseteq \varepsilon (\nabla t)\). As a result, \(((B \rightarrow C),A) \in \varepsilon (\nabla t) \) which means \(\varepsilon \Vdash [\nabla t](B \rightarrow C/A)\).

For the axioms (Abs) and (Id) soundness is immediate from the definition of basic evaluation.    \(\square \)

Theorem 5

System \(\textsf{JE}_{\textsf{CS}}\) is complete with respect to the class of all basic models.

Proof

Given a maximal consistent \(\varGamma \), we define the canonical model \(\varepsilon ^c\) induced by \(\varGamma \) as follows:

  • \(\varepsilon ^c _{\varGamma } (P):=1 \), if \(P \in \varGamma \) and \(\varepsilon ^c :=0\), if \(P \notin \varGamma \);

  • \(\varepsilon ^c _{\varGamma } (\lambda ) :=\{ F \ | \ \lambda :F \in \varGamma \}\);

  • \(\varepsilon ^c _{\varGamma } (t) :=\{ (F,G) \ | \ [t](F/G) \in \varGamma \}\).

We first show that \(\varepsilon ^c\) is a basic evaluation. Conditions (i)–(v) follow immediately from the maximal consistency of \(\varGamma \) and axioms of \(\textsf{j}- \textsf{j5}\). Conditions (1)–(6) are obtained from the axioms (Abs), (COK), (Nec), (Id), (Ext), and (Sh). Let us only show (1) and (3).

To check condition (1), suppose \((C,B) \in \varepsilon ^c (t) \ominus \varepsilon ^c (s)\). Then there is an \(A \in \textsf{Fm}\) such that \((A \rightarrow C , B) \in \varepsilon ^c (t)\) and \((A,B) \in \varepsilon ^c (s)\). By the definition of canonical model \([t](A\rightarrow C /B) \in \varGamma \) and \([s](A/B) \in \varGamma \), by maximal consistency of \(\varGamma \) and axiom (COK) we have \([t \cdot s](C/B) \in \varGamma \), which gives \((C/B) \in \varepsilon ^c (t \cdot s)\).

To check condition (3), suppose \((A,B) \in \textsf{n}(\varepsilon ^c (\lambda ))\). Then \(A \in \varepsilon ^c (\lambda )\), which means \(\lambda :A \in \varGamma \). By maximal consistency of \(\varGamma \) and axiom (Nec) we get \([\textsf{n}(\lambda )](A/B) \in \varGamma \). By the definition of canonical model we conclude \((A,B) \in \varepsilon ^c (\textsf{n}(\lambda ))\). Thus \(\varepsilon ^c\) is a basic evaluation.

The truth lemma states:

$$\begin{aligned} F \in \varGamma \ \ \text {iff} \ \ \varepsilon ^c \Vdash F , \end{aligned}$$

which is established as usual by induction on the structure of F. In case \(F= [t](A/B)\), we have \([t](A/B) \in \varGamma \) iff \((A,B) \in \varepsilon ^c (t)\) iff \(\varepsilon ^c \Vdash [t](A/B)\).

Due to axiom \(\textsf{jt}\), \(\varepsilon ^c\) is factive by the following reasoning: if \(\varepsilon ^c \Vdash \lambda : F\), we get by the truth lemma that \(\lambda : F \in \varGamma \). By the maximal consistency of \(\varGamma \) we have \(F \in \varGamma \) which means \(\varepsilon ^c \Vdash F\) by the truth lemma.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faroldi, F.L.G., Rohani, A., Studer, T. (2023). Conditional Obligations in Justification Logic. In: Hansen, H.H., Scedrov, A., de Queiroz, R.J. (eds) Logic, Language, Information, and Computation. WoLLIC 2023. Lecture Notes in Computer Science, vol 13923. Springer, Cham. https://doi.org/10.1007/978-3-031-39784-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39784-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39783-7

  • Online ISBN: 978-3-031-39784-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics