Abstract
Aspect-based sentiment analysis aims to predict the polarity of sentiment towards a specific aspect in the context. In this paper, we propose the Temporal Semantic Attention Network (TSAN) model for ABSA tasks, which comprising a Global Semantic Feature Network for feature extraction and an Interact Dual Attention module to capture the dependencies of text-target interaction. Experiments on four ABSA benchmark datasets validates the effectiveness of our modules in extracting aspect-level sentiment features.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tang, D., Qin, B., Feng, X., Liu, T.: Effective LSTMS for target-dependent sentiment classification (2016)
Wang, Y., Huang, M., Zhu, X., Zhao, L.: Attention-based LSTM for aspect-level sentiment classification. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 606–615 (2016)
Ma, D., Li, S., Zhang, X., Wang, H.: Interactive attention networks for aspect-level sentiment classification. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI 2017), pp. 4068–4074. AAAI Press (2017)
Cui, Y., Chen, Z., Wei, S., Wang, S., Liu, T., Hu, G.: Attention-over-attention neural networks for reading comprehension (2016)
Tang, D., Qin, B., Liu, T.: Aspect level sentiment classification with deep memory network. arXiv preprint arXiv:1605.08900 (2016)
Dong, L., Wei, F., Tan, C., Tang, D., Zhou, M., Xu, K.: Adaptive recursive neural network for target-dependent Twitter sentiment classification. In: Proceedings 52nd Annual Meeting Association Computational Linguistics, vol. 2, pp. 49–54 (2014)
Manandhar, S.: Semeval-2014 task 4: aspect based sentiment analysis. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014) (2014)
Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I.: Semeval-2015 task 12: aspect based sentiment analysis. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 486–495 (2015)
Pontiki, M., et al.: Semeval-2016 task 5: aspect based sentiment analysis. In: International Workshop on Semantic Evaluation, pp. 19–30 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, B., Tong, X., Xing, Y., Shen, Q., Zhao, H., Xie, Z. (2023). Temporal Semantic Attention Network for Aspect-Based Sentiment Analysis. In: Strauss, C., Amagasa, T., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2023. Lecture Notes in Computer Science, vol 14147. Springer, Cham. https://doi.org/10.1007/978-3-031-39821-6_40
Download citation
DOI: https://doi.org/10.1007/978-3-031-39821-6_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-39820-9
Online ISBN: 978-3-031-39821-6
eBook Packages: Computer ScienceComputer Science (R0)