Skip to main content

Security Model for Privacy-Preserving Blockchain-Based Cryptocurrency Systems

  • Conference paper
  • First Online:
Network and System Security (NSS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13983))

Included in the following conference series:

Abstract

Privacy-preserving blockchain-based cryptocurrency systems have become quite popular as a way to provide confidential payments. These cryptocurrency systems differ in their designs, underlying cryptography, and confidentiality level. Some of these systems provide confidentiality for their users or transactions or both. There has been a thriving interest in constructing different privacy-preserving cryptocurrency systems with improved security and additional features. Nevertheless, many of these available systems lack security models which makes it hard to prove the security properties of these systems.

Despite the differences in the privacy notions of existing privacy-preserving cryptocurrency systems, in this paper, we present a first attempt to create a general framework for a privacy-preserving blockchain-based bank \(\textsf{PBB}\). We present the security properties of this system and model the security experiments for each of the properties. Our \(\textsf{PBB}\) model can also work for bank-less cryptocurrency systems. Henceforth, we present a brief security analysis for one of the most notable privacy-preserving cryptocurrencies, Monero, using the security model of the \(\textsf{PBB}\) system. Our analysis proves that our \(\textsf{PBB}\) system can be easily used to formalise the security of other available privacy-preserving cryptocurrencies.

M. Raikwar and S. Wu—This work was done in part while the author was at NTNU, Norway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almashaqbeh, G., Solomon, R.: SoK: privacy-preserving computing in the blockchain era. Cryptology ePrint Archive, Report 2021/727 (2021). https://ia.cr/2021/727

  2. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: ZEXE: enabling decentralized private computation. In: 2020 IEEE Symposium on Security and Privacy (SP), pp. 947–964 (2020). https://doi.org/10.1109/SP40000.2020.00050

  3. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: towards privacy in a smart contract world. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 423–443. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_23

    Chapter  Google Scholar 

  4. Cremers, C., Loss, J., Wagner, B.: A holistic security analysis of monero transactions. Cryptology ePrint Archive, Paper 2023/321 (2023). https://eprint.iacr.org/2023/321

  5. Duffield, E., Diaz, D.: Dash: a privacy centric cryptocurrency (2015)

    Google Scholar 

  6. Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: a new design for anonymous cryptocurrencies. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 649–678. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_23

    Chapter  Google Scholar 

  7. Gjøsteen, K., Raikwar, M., Wu, S.: PriBank: confidential blockchain scaling using short commit-and-proof NIZK argument. In: Galbraith, S.D. (ed.) CT-RSA 2022. LNCS, vol. 13161, pp. 589–619. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95312-6_24

    Chapter  Google Scholar 

  8. Jivanyan, A.: Lelantus: Towards confidentiality and anonymity of blockchain transactions from standard assumptions. IACR Cryptol. ePrint Arch. 2019, 373 (2019)

    Google Scholar 

  9. Jivanyan, A., Feickert, A.: Lelantus spark: secure and flexible private transactions. Cryptology ePrint Archive (2021)

    Google Scholar 

  10. Kerber, T., Kiayias, A., Kohlweiss, M.: Kachina-foundations of private smart contracts. In: 2021 IEEE 34th Computer Security Foundations Symposium (CSF), pp. 1–16. IEEE (2021)

    Google Scholar 

  11. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 839–858 (2016). https://doi.org/10.1109/SP.2016.55

  12. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 839–858. IEEE (2016)

    Google Scholar 

  13. Lai, R.W., Ronge, V., Ruffing, T., Schröder, D., Thyagarajan, S.A.K., Wang, J.: Omniring: scaling private payments without trusted setup. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 31–48 (2019)

    Google Scholar 

  14. Liang, M., Karantaidou, I., Baldimtsi, F., Gordon, S.D., Varia, M.: (\(\epsilon , \delta \))-indistinguishable mixing for cryptocurrencies. Proc. Priv. Enhanc. Technol. 2022(1), 49–74 (2021)

    Google Scholar 

  15. Mitani, T., Otsuka, A.: Confidential and auditable payments. In: Bernhard, M., et al. (eds.) FC 2020. LNCS, vol. 12063, pp. 466–480. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54455-3_33

    Chapter  MATH  Google Scholar 

  16. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). http://bitcoin.org/bitcoin.pdf

  17. Saberhagen, N.V.: CryptoNote v 2.0 (2013). https://bytecoin.org/old/whitepaper.pdf

  18. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE (2014)

    Google Scholar 

  19. Steffen, S., Bichsel, B., Gersbach, M., Melchior, N., Tsankov, P., Vechev, M.: zkay: Specifying and enforcing data privacy in smart contracts. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 1759–1776 (2019)

    Google Scholar 

  20. The Monero Project: Monero (2014). https://web.getmonero.org

  21. Wijaya, D.A., Liu, J., Steinfeld, R., Liu, D., Yuen, T.H.: Anonymity reduction attacks to monero. In: Guo, F., Huang, X., Yung, M. (eds.) Inscrypt 2018. LNCS, vol. 11449, pp. 86–100. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14234-6_5

    Chapter  Google Scholar 

  22. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Yellow Paper (2014)

    Google Scholar 

  23. Zhang, Y., Long, Y., Liu, Z., Liu, Z., Gu, D.: Z-channel: scalable and efficient scheme in zerocash. Comput. Secur. 86, 112–131 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Raikwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raikwar, M., Wu, S., Gjøsteen, K. (2023). Security Model for Privacy-Preserving Blockchain-Based Cryptocurrency Systems. In: Li, S., Manulis, M., Miyaji, A. (eds) Network and System Security. NSS 2023. Lecture Notes in Computer Science, vol 13983. Springer, Cham. https://doi.org/10.1007/978-3-031-39828-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39828-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39827-8

  • Online ISBN: 978-3-031-39828-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics