Skip to main content

Group Oriented Attribute-Based Encryption Scheme from Lattices with the Employment of Shamir’s Secret Sharing Scheme

  • Conference paper
  • First Online:
Network and System Security (NSS 2023)

Abstract

This paper delivers a post-quantum construction for group-oriented attribute-based encryption (GO-ABE) using lattice-based cryptography. The GO-ABE scheme enables users from the same group to combine their attributes to satisfy a decryption policy without revealing their secret keys. GO-ABE is particularly useful when no single user can fulfill the decryption policy alone, but a group of users can satisfy it together. Li et al. introduced the idea of GO-ABE at NSS 2015, discussing its importance in accessing patient data during emergencies. However, since Li et al.’s scheme uses bilinear mappings, it is not secure against quantum attacks. To ensure security against quantum attacks, we construct the GO-ABE scheme using the post-quantum cryptographic primitive lattices, and employ Shamir’s secret sharing scheme to meet the GO-ABE requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Affum, E., Zhang, X., Wang, X.: Lattice CP-ABE scheme supporting reduced-OBDD structure. In: Bhatia, S.K., Tiwari, S., Ruidan, S., Trivedi, M.C., Mishra, K.K. (eds.) Advances in Computer, Communication and Computational Sciences. AISC, vol. 1158, pp. 131–142. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-4409-5_12

    Chapter  Google Scholar 

  2. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

    Chapter  MATH  Google Scholar 

  3. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_6

    Chapter  MATH  Google Scholar 

  4. Agrawal, S., Boyen, X.: Identity-based encryption from lattices in the standard model. Manuscript, 3 July 2009

    Google Scholar 

  5. Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional encryption for threshold functions (or Fuzzy IBE) from lattices. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_17

    Chapter  Google Scholar 

  6. Aluvalu, R., Uma Maheswari, V., Chennam, K.K., Shitharth, S.: Data security in cloud computing using ABE-based access control. Archit. Wirel. Netw. Solut. Secur. Issues 196, 47–61 (2021)

    Google Scholar 

  7. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory Comput. Syst. 48(3), 535–553 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_6

    Chapter  MATH  Google Scholar 

  9. Bendlin, R., Damgård, I.: Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 201–218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_13

    Chapter  Google Scholar 

  10. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: SP 2007, pp. 321–334. IEEE (2007)

    Google Scholar 

  11. Beullens, W., Dobson, S., Katsumata, S., Lai, Y.F., Pintore, F.: Group signatures and more from isogenies and lattices: generic, simple, and efficient. Designs, Codes and Cryptography, pp. 1–60 (2023)

    Google Scholar 

  12. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  13. Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_8

    Chapter  Google Scholar 

  14. Butnaru, A.I.: Attribute-based encryption for weighted threshold access structures. In: IC ECCO-2022. Technical University of Moldova (2022). https://doi.org/10.52326/ic-ecco.2022/SEC.03

  15. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. J. Cryptol. 25(4), 601–639 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cheng, R., Wu, K., Su, Y., Li, W., Cui, W., Tong, J.: An efficient ECC-based CP-ABE scheme for power IoT. Processes 9(7), 1176 (2021)

    Google Scholar 

  17. Cheung, L., Newport, C.: Provably secure ciphertext policy ABE. In: CCS 2007, pp. 456–465 (2007)

    Google Scholar 

  18. Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3_32

    Chapter  Google Scholar 

  19. Dai, W., et al.: Implementation and evaluation of a lattice-based key-policy ABE scheme. IEEE Trans. Inf. Forensics Secur. 13(5), 1169–1184 (2017)

    Article  Google Scholar 

  20. Das, S., Namasudra, S.: Macpabe: Multi-authority-based CP-ABE with efficient attribute revocation for IoT-enabled healthcare infrastructure. Int. J. Netw. Manag. 33(3), e2200 (2023)

    Article  Google Scholar 

  21. Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: A ciphertext-policy attribute-based encryption scheme with constant ciphertext length. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 13–23. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00843-6_2

    Chapter  Google Scholar 

  22. Ge, A., Zhang, R., Chen, C., Ma, C., Zhang, Z.: Threshold ciphertext policy attribute-based encryption with constant size ciphertexts. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 336–349. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31448-3_25

    Chapter  Google Scholar 

  23. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC 2008, pp. 197–206 (2008)

    Google Scholar 

  24. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: CCS 2006, pp. 89–98. ACM (2006)

    Google Scholar 

  25. Gür, K.D., Polyakov, Y., Rohloff, K., Ryan, G.W., Sajjadpour, H., Savaş, E.: Practical applications of improved gaussian sampling for trapdoor lattices. IEEE Trans. Comput. 68(4), 570–584 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. He, Y., et al.: An efficient ciphertext-policy attribute-based encryption scheme supporting collaborative decryption with blockchain. IEEE Internet Things J. 9(4), 2722–2733 (2021)

    Article  Google Scholar 

  27. Herranz, J., Laguillaumie, F., Ràfols, C.: Constant size ciphertexts in threshold attribute-based encryption. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 19–34. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_2

    Chapter  Google Scholar 

  28. Hong, H., Chen, D., Sun, Z.: A practical application of CP-ABE for mobile PHR system: a study on the user accountability. SpringerPlus 5(1), 1320 (2016)

    Article  Google Scholar 

  29. Ibraimi, L., Petkovic, M., Nikova, S., Hartel, P., Jonker, W.: Ciphertext-policy attribute-based threshold decryption with flexible delegation and revocation of user attributes (2009)

    Google Scholar 

  30. Jemihin, Z.B., Tan, S.F., Chung, G.C.: Attribute-based encryption in securing big data from post-quantum perspective: a survey. Cryptography 6(3), 40 (2022)

    Article  Google Scholar 

  31. Joshi, M., Joshi, K.P., Finin, T.: Delegated authorization framework for EHR services using attribute based encryption. IEEE Trans. Serv. Comput. 14(6), 1612–1623 (2019)

    Article  Google Scholar 

  32. Katsumata, S., Matsuda, T., Takayasu, A.: Lattice-based revocable (hierarchical) IBE with decryption key exposure resistance. Theor. Comput. Sci. 809, 103–136 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lai, J., Guo, F., Susilo, W., Jiang, P., Yang, G., Huang, X.: Generic conversions from CPA to CCA without ciphertext expansion for threshold ABE with constant-size ciphertexts. Inf. Sci. 613, 966–981 (2022)

    Article  Google Scholar 

  34. Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_20

    Chapter  Google Scholar 

  35. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_4

    Chapter  Google Scholar 

  36. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_31

    Chapter  Google Scholar 

  37. Li, M., Huang, X., Liu, J.K., Xu, L.: GO-ABE: group-oriented attribute-based encryption. In: Au, M.H., Carminati, B., Kuo, C.-C.J. (eds.) NSS 2014. LNCS, vol. 8792, pp. 260–270. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11698-3_20

    Chapter  Google Scholar 

  38. Li, M., Yu, S., Zheng, Y., Ren, K., Lou, W.: Scalable and secure sharing of personal health records in cloud computing using attribute-based encryption. IEEE Trans. Parallel Distrib. Syst. 24(1), 131–143 (2012)

    Article  Google Scholar 

  39. Li, Q., Xiong, H., Zhang, F., Zeng, S., et al.: An expressive decentralizing KP-ABE scheme with constant-size ciphertext. IJ Netw. Secur. 15(3), 161–170 (2013)

    Google Scholar 

  40. Li, Y., Zhang, Y., Liu, W., Ning, J., Zheng, D.: A collaborative access control scheme based on incentive mechanisms. In: Chen, X., Shen, J., Susilo, W. (eds.) Cyberspace Safety and Security. CSS 2022. LNCS, vol. 13547, pp. 48–55. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18067-5_4

  41. Lin, H., Cao, Z., Liang, X., Shao, J.: Secure threshold multi authority attribute based encryption without a central authority. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 426–436. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89754-5_33

    Chapter  Google Scholar 

  42. Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter, shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_19

    Chapter  Google Scholar 

  43. Lu, Z., Guo, Y., Li, J., Jia, W., Lv, L., Shen, J.: Novel searchable attribute-based encryption for the internet of things. Wirel. Commun. Mob. Comput. 2022 (2022)

    Google Scholar 

  44. Moffat, S., Hammoudeh, M., Hegarty, R.: A survey on ciphertext-policy attribute-based encryption (CP-ABE) approaches to data security on mobile devices and its application to IoT. In: Proceedings of the International Conference on Future Networks and Distributed Systems (2017)

    Google Scholar 

  45. Nali, D., Adams, C.M., Miri, A.: Using threshold attribute-based encryption for practical biometric-based access control. IJ Netw. Secur. 1(3), 173–182 (2005)

    Google Scholar 

  46. Olimid, R.F.: Setup in secret sharing schemes using random values. Secur. Commun. Netw. 9(18), 6034–6041 (2016)

    Article  Google Scholar 

  47. Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci. 10(4), 283–424 (2016). https://doi.org/10.1561/0400000074

  48. Perera, M.N.S., Nakamura, T., Hashimoto, M., Yokoyama, H., Cheng, C.M., Sakurai, K.: Decentralized and collaborative tracing for group signatures. In: Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security, pp. 1258–1260 (2022)

    Google Scholar 

  49. Porwal, S., Mittal, S.: A fully flexible key delegation mechanism with efficient fine-grained access control in CP-ABE. J. Ambient Intell. Humaniz. Comput. 1–20 (2022)

    Google Scholar 

  50. Process, N.P.S.: Lecture 08: Shamir secret sharing (introduction) (2022). https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4

  51. Pussewalage, H.S.G., Oleshchuk, V.: A delegatable attribute based encryption scheme for a collaborative e-health cloud. IEEE Trans. Serv. Comput. 16(2), 787–801 (2022)

    Article  Google Scholar 

  52. Ramu, G., Reddy, B.E., Jayanthi, A., Prasad, L.N.: Fine-grained access control of EHRs in cloud using CP-ABE with user revocation. Health Technol. 9(4), 487–496 (2019)

    Article  Google Scholar 

  53. Rasori, M., La Manna, M., Perazzo, P., Dini, G.: A survey on attribute-based encryption schemes suitable for the internet of things. IEEE Internet Things J. 9(11), 8269–8290 (2022)

    Article  Google Scholar 

  54. Regev, O.: New lattice-based cryptographic constructions. J. ACM (JACM) 51(6), 899–942 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

  56. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  57. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  58. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Review 41(2), 303–332 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  59. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_15

    Chapter  Google Scholar 

  60. Sun, P.J.: Privacy protection and data security in cloud computing: a survey, challenges, and solutions. IEEE Access 7, 147420–147452 (2019)

    Article  Google Scholar 

  61. Tao, X., Lin, C., Zhou, Q., Wang, Y., Liang, K., Li, Y.: Secure and efficient access of personal health record: a group-oriented ciphertext-policy attribute-based encryption. J. Chin. Inst. Eng. 42(1), 80–86 (2019)

    Article  Google Scholar 

  62. Wang, Y.: Lattice ciphertext policy attribute-based encryption in the standard model. IJ Netw. Secur. 16(6), 444–451 (2014)

    Google Scholar 

  63. Wang, Y., Chen, K., Long, Y., Liu, Z.: Accountable authority key policy attribute-based encryption. Sci. China Inf. Sci. 55(7), 1631–1638 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_7

    Chapter  Google Scholar 

  65. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_4

    Chapter  Google Scholar 

  66. Xue, Y., Xue, K., Gai, N., Hong, J., Wei, D.S., Hong, P.: An attribute-based controlled collaborative access control scheme for public cloud storage. IEEE Trans. Inf. Forensics Secur. 14(11), 2927–2942 (2019)

    Article  Google Scholar 

  67. Yang, Y., Sun, J., Liu, Z., Qiao, Y.: Practical revocable and multi-authority CP-ABE scheme from RLWE for cloud computing. J. Inf. Secur. Appl. 65, 103108 (2022)

    Google Scholar 

  68. Yin, H., Xiong, Y., Zhang, J., Ou, L., Liao, S., Qin, Z.: A key-policy searchable attribute-based encryption scheme for efficient keyword search and fine-grained access control over encrypted data. Electronics 8(3), 265 (2019)

    Article  Google Scholar 

  69. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained data access control in cloud computing. In: 2010 Proceedings IEEE INFOCOM, pp. 1–9. IEEE (2010)

    Google Scholar 

  70. Yu, S., Wang, C., Ren, K., Lou, W.: Attribute based data sharing with attribute revocation. In: ASIACCS 2010, pp. 261–270. ACM (2010)

    Google Scholar 

  71. Zhang, R., Li, J., Lu, Y., Han, J., Zhang, Y.: Key escrow-free attribute based encryption with user revocation. Inf. Sci. 600, 59–72 (2022)

    Article  Google Scholar 

  72. Zhao, S., Jiang, R., Bhargava, B.: RL-ABE: a revocable lattice attribute based encryption scheme based on R-LWE problem in cloud storage. IEEE Trans. Serv. Comput. 15(2), 1026–1035 (2020)

    Article  Google Scholar 

  73. Zhao, Y., Zhang, X., Xie, X., Ding, Y., Kumar, S.: A verifiable hidden policy CP-ABE with decryption testing scheme and its application in VANET. Trans. Emerg. Telecommun. Technol. 33(5), e3785 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maharage Nisansala Sevwandi Perera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perera, M.N.S., Nakamura, T., Matsunaka, T., Yokoyama, H., Sakurai, K. (2023). Group Oriented Attribute-Based Encryption Scheme from Lattices with the Employment of Shamir’s Secret Sharing Scheme. In: Li, S., Manulis, M., Miyaji, A. (eds) Network and System Security. NSS 2023. Lecture Notes in Computer Science, vol 13983. Springer, Cham. https://doi.org/10.1007/978-3-031-39828-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39828-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39827-8

  • Online ISBN: 978-3-031-39828-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics