Skip to main content

DBGAN: A Data Balancing Generative Adversarial Network for Mobility Pattern Recognition

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14148))

Included in the following conference series:

Abstract

Mobility pattern recognition is a central aspect of transportation and data mining research. Despite the development of various machine learning techniques for this problem, most existing methods face challenges such as reliance on handcrafted features (e.g., user has to specify a feature such as “travel time”) or issues with data imbalance (e.g., fewer older travelers than commuters). In this paper, we introduce a novel Data Balancing Generative Adversarial Network (DBGAN), which is a specifically designed attention mechanism-based GAN model to address these challenges in mobility pattern recognition. DBGAN captures both static (e.g., travel locations) and dynamic (e.g., travel times) features of different passenger groups, and avoids using handcrafted features that may result in information loss, based on a sequence-to-image embedding method. Our model is then applied to overcome the data imbalance issue and perform mobility pattern recognition. We evaluate the proposed method on real-world public transportation smart card data from Suzhou, China, and focus on recognizing two different passenger groups: older people and students. The results of our experiments demonstrate that DBGAN is able to accurately identify the different passenger groups in the data, with the detected mobility patterns being consistent with the ground truth. These results highlight the effectiveness of DBGAN in overcoming data imbalance in mobility pattern recognition, and demonstrate its potential for wider use in transportation and data mining applications.

Supported by CRT-AI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, D.B., Diaz, E.M.: Survey of machine learning methods applied to urban mobility. IEEE Access 10, 30349–30366 (2022)

    Article  Google Scholar 

  2. Berke, A., Doorley, R., Larson, K., Moro, E.: Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy. In: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pp. 964–967 (2022)

    Google Scholar 

  3. Bird, J.J., Barnes, C.M., Manso, L.J., Ekárt, A., Faria, D.R.: Fruit quality and defect image classification with conditional GAN data augmentation. Sci. Hortic. 293, 110684 (2022)

    Article  Google Scholar 

  4. Chaudhari, P., Agrawal, H., Kotecha, K.: Data augmentation using mg-GAN for improved cancer classification on gene expression data. Soft. Comput. 24, 11381–11391 (2020)

    Article  Google Scholar 

  5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  6. Chen, C.F.R., Fan, Q., Panda, R.: Crossvit: cross-attention multi-scale vision transformer for image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 357–366 (2021)

    Google Scholar 

  7. Chen, Z., He, K., Li, J., Geng, Y.: Seq2img: A sequence-to-image based approach towards IP traffic classification using convolutional neural networks. In: 2017 IEEE International Conference on Big data (big data), pp. 1271–1276. IEEE (2017)

    Google Scholar 

  8. Deng, G., Han, C., Dreossi, T., Lee, C., Matteson, D.S.: IB-GAN: a unified approach for multivariate time series classification under class imbalance. In: Proceedings of the 2022 SIAM International Conference on Data Mining (SDM), pp. 217–225. SIAM (2022)

    Google Scholar 

  9. Du, B., Liu, C., Zhou, W., Hou, Z., Xiong, H.: Detecting pickpocket suspects from large-scale public transit records. IEEE Trans. Knowl. Data Eng. 31(3), 465–478 (2018)

    Article  Google Scholar 

  10. Ferreira, P., Zavgorodnii, C., Veiga, L.: edgetrans-edge transport mode detection. Pervasive Mob. Comput. 69, 101268 (2020)

    Article  Google Scholar 

  11. Fukumizu, K., Song, L., Gretton, A.: Kernel Bayes’ rule: Bayesian inference with positive definite kernels. J. Mach. Learn. Res. 14(1), 3753–3783 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Goodfellow, I.J.: On distinguishability criteria for estimating generative models. arXiv preprint arXiv:1412.6515 (2014)

  13. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. In:30th Proceedings of Conference on Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  15. Hauser, M.W.: Principles of oversampling a/d conversion. J. Audio Eng. Soc. 39(1/2), 3–26 (1991)

    Google Scholar 

  16. Ke, S., Xie, M., Zhu, H., Cao, Z.: Group-based recurrent neural network for human mobility prediction. Neural Comput. Appl. 34(12), 9863–9883 (2022)

    Article  Google Scholar 

  17. Kim, D.Y., Song, H.Y.: Method of predicting human mobility patterns using deep learning. Neurocomputing 280, 56–64 (2018)

    Article  Google Scholar 

  18. Kong, X., Gao, H., Alfarraj, O., Ni, Q., Zheng, C., Shen, G.: HUAD: hierarchical urban anomaly detection based on spatio-temporal data. IEEE Access 8, 26573–26582 (2020)

    Article  Google Scholar 

  19. Liang, J., et al.: Sketch guided and progressive growing GAN for realistic and editable ultrasound image synthesis. Med. Image Anal. 79, 102461 (2022)

    Article  Google Scholar 

  20. Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybernet. Part B (Cybernetics) 39(2), 539–550 (2008)

    Google Scholar 

  21. Loo, B.P., Zhang, F., Hsiao, J.H., Chan, A.B., Lan, H.: Applying the hidden Markov model to analyze urban mobility patterns: an interdisciplinary approach. Chin. Geogra. Sci. 31, 1–13 (2021)

    Article  Google Scholar 

  22. Luo, W., et al.: Fault diagnosis method based on two-stage GAN for data imbalance. IEEE Sens. J. 22(22), 21961–21973 (2022)

    Article  Google Scholar 

  23. Lv, Y., Zhi, D., Sun, H., Qi, G.: Mobility pattern recognition based prediction for the subway station related bike-sharing trips. Transport. Res. Part C: Emer. Technol. 133, 103404 (2021)

    Article  Google Scholar 

  24. Nirmal, P., Disanayaka, I., Haputhanthri, D., Wijayasiri, A.: Transportation mode detection using crowdsourced smartphone data. In: 2021 28th Conference of Open Innovations Association (FRUCT,. pp. 341–349. IEEE (2021)

    Google Scholar 

  25. Ouyang, X., Zhang, C., Zhou, P., Jiang, H., Gong, S.: DeepsPace: an online deep learning framework for mobile big data to understand human mobility patterns. arXiv preprint arXiv:1610.07009 (2016)

  26. Paruchuri, S.T., Guo, J., Kurdila, A.: Kernel center adaptation in the reproducing kernel Hilbert space embedding method. Int. J. Adapt. Control Signal Process. 36(7), 1562–1583 (2022)

    Article  MathSciNet  Google Scholar 

  27. Rudin, W.: Fourier Analysis on Groups. Courier Dover Publications (2017)

    Google Scholar 

  28. Song, L., Fukumizu, K., Gretton, A.: Kernel embeddings of conditional distributions: a unified kernel framework for nonparametric inference in graphical models. IEEE Signal Process. Mag. 30(4), 98–111 (2013)

    Article  Google Scholar 

  29. Song, L., Wang, R., Xiao, D., Han, X., Cai, Y., Shi, C.: Anomalous trajectory detection using recurrent neural network. In: Gan, G., Li, B., Li, X., Wang, S. (eds.) ADMA 2018. LNCS (LNAI), vol. 11323, pp. 263–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05090-0_23

    Chapter  Google Scholar 

  30. Song, Q., Sun, B., Li, S.: Multimodal sparse transformer network for audio-visual speech recognition. In: IEEE Transactions on Neural Networks and Learning Systems (2022)

    Google Scholar 

  31. Wang, L., Zhang, Y., Zhao, X., Liu, H., Zhang, K.: Irregular travel groups detection based on cascade clustering in urban subway. IEEE Trans. Intell. Transp. Syst. 21(5), 2216–2225 (2019)

    Article  Google Scholar 

  32. Wolf, T., et al.: Huggingface’s transformers: state-of-the-art natural language processing. arXiv preprint arXiv:1910.03771 (2019)

  33. Yu, C., Li, H., Xu, X., Liu, J., Miao, J., Wang, Y., Sun, Q.: Data-driven approach for passenger mobility pattern recognition using spatiotemporal embedding. J. Adv. Transp. 2021, 1–21 (2021)

    Google Scholar 

  34. Yuan, Y., Raubal, M.: Extracting dynamic urban mobility patterns from mobile phone data. In: Xiao, N., Kwan, M.-P., Goodchild, M.F., Shekhar, S. (eds.) GIScience 2012. LNCS, vol. 7478, pp. 354–367. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33024-7_26

    Chapter  Google Scholar 

  35. Zhang, M., Wang, H., He, P., Malik, A., Liu, H.: Exposing unseen GAN-generated image using unsupervised domain adaptation. Knowl.-Based Syst. 257, 109905 (2022)

    Article  Google Scholar 

  36. Zhang, S., Yang, Y., Zhen, F., Lobsang, T., Li, Z.: Understanding the travel behaviors and activity patterns of the vulnerable population using smart card data: an activity space-based approach. J. Transp. Geogr. 90, 102938 (2021)

    Google Scholar 

Download references

Acknowledgements

This publication has emanated from research supported in part by a grant from Science Foundation Ireland under Grant number 18/CRT/ 6223. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, K., Liu, H., Clarke, S. (2023). DBGAN: A Data Balancing Generative Adversarial Network for Mobility Pattern Recognition. In: Wrembel, R., Gamper, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2023. Lecture Notes in Computer Science, vol 14148. Springer, Cham. https://doi.org/10.1007/978-3-031-39831-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39831-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39830-8

  • Online ISBN: 978-3-031-39831-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics