Skip to main content

EXOS: Explaining Outliers in Data Streams

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2023)

Abstract

Real-time outlier detection is important in many data stream applications. To help analysts understand the detected outliers better, the outliers should be presented with their explanations. One type of explanations for an outlier is its set of outlying attributes which is a subset of features responsible for the outlier’s abnormality. There exist techniques that generate outlying attributes in data streams; however, none simultaneously considers the cross-correlation among data streams, the unbounded volume of data, and concept drift. To fill this gap, we propose EXOS, a framework that generates outlying attributes in multi-dimensional data streams. For each outlier, it incrementally finds a local context to determine the decision boundary that separates the outlier from the normal data while handling both the unbounded volume of data and concept drift. It considers the potential data correlation within a data stream and across data streams to estimate the local context. The experiments using three real and two synthetic datasets show that, on average, EXOS achieves up to 49% higher F1 score and 29.6 times lower explanation time than existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput. Surv. 41, 15:1–15:58 (2009)

    Google Scholar 

  2. Tran, L., Mun, M.Y., Shahabi, C.: Real-time distance-based outlier detection in data streams. In: Proceedings of the VLDB Endowment (2020)

    Google Scholar 

  3. Yoon, S., Lee, J.G., Lee, B.S.: NETS: Extremely fast outlier detection from a data stream via set-based processing. In: Proceedings of the VLDB Endowment (2018)

    Google Scholar 

  4. Siddiqui, M.A., Fern, A., Dietterich, T.G., Wong, W.-K.: Sequential feature explanations for anomaly detection. ACM Trans. Knowl. Discov. Data 13, 1–22 (2019)

    Article  Google Scholar 

  5. Panjei, E., Gruenwald, L., Leal, E., Nguyen, C., Silvia, S.: A survey on outlier explanations. VLDB J. 31, 977–1008 (2022)

    Google Scholar 

  6. Sadik, M., Gruenwald, L.: Research issues in outlier detection for data streams. SIGKDD Explor. 15, 33–40 (2014)

    Article  Google Scholar 

  7. Micenková, B., Ng, R.T., Dang, X.-H., Assent, I.: Explaining outliers by subspace separability. In: 2013 IEEE 13th International Conference on Data Mining, pp. 518–527 (2013)

    Google Scholar 

  8. Liu, N., Shin, D., Hu, X.: Contextual outlier interpretation. In: IJCAI (2018)

    Google Scholar 

  9. Song, F., Diao, Y., Read, J., Stiegler, A., Bifet, A.: EXAD: a system for explainable anomaly detection on big data traces. In: IEEE International Conference on Data Mining Workshops, pp. 1435–1440 (2018)

    Google Scholar 

  10. Panjei, E., Gruenwald, L., Leal, E., Nguyen, C.: Micro-clusters-based outlier explanations for data (2021) Streams. https://sites.google.com/view/andea2021/accepted-papers

  11. Li, C.L., Lin, H. ten, Lu, C.J.: Rivalry of two families of algorithms for memory-restricted streaming PCA. In: Proceedings of International Conference on Artificial Intelligence and Statistics (2016)

    Google Scholar 

  12. Ackerman, M., Dasgupta, S.: Incremental clustering: the case for extra clusters. In: Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  13. Boser, B.E., Guyon, I.M., Vapnik, V.N.: Training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory (1992)

    Google Scholar 

  14. Tibshirani, R.: Regression shrinkage and selection via the lasso: a retrospective. J. R. Stat. Soc. Ser. B Stat. Methodol. 73 (2011)

    Google Scholar 

  15. Bailis, P., Gan, E., Madden, S., Narayanan, D., Rong, K., Suri, S.: MacroBase: prioritizing attention in fast data. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (2017)

    Google Scholar 

  16. Jacob, V., Song, F., Stiegler, A., Rad, B., Diao, Y., Tatbul, N.: Exathlon: A benchmark for explainable anomaly detection over time series. In: Proceedings of the VLDB Endowment (2021)

    Google Scholar 

  17. Zhang, H., Diao, Y., Meliou, A.: EXstream: explaining anomalies in event stream monitoring. In: International Conference on Extending Database Technology (2017)

    Google Scholar 

  18. Bodik, P., Hong, W., Guestrin, C., Madden, S., Paskin, M., Thibaux, R.: Intel Lab Data (2004). http://db.csail.mit.edu/labdata/labdata.html

  19. Buckreis, T., Winders, A., Wang, P., Brandenberg, S., Stewart, J.: Microtremor Data Collected in Sacramento-San Joaquin Delta Region of California (2021). https://doi.org/10.17603/ds2-dk6t-8610

  20. Makonin, S.: AMPds2: The Almanac of Minutely Power Dataset (Version 2) (2016). https://doi.org/10.7910/DVN/FIE0S4

  21. Hardin, J., Garcia, S.R., Golan, D.: A method for generating realistic correlation matrices. Ann Appl Stat. 7, 1733–1762 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gu, F.: Concept Drift Detection for Machine Learning with Stream Data (2019). https://opus.lib.uts.edu.au/bitstream/10453/140165/2/02whole.pdf

  23. Das, S.: Best Practices for Dealing with Concept Drift. https://neptune.ai/blog/concept-drift-best-practices. Accessed 03 Apr 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egawati Panjei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panjei, E., Gruenwald, L. (2023). EXOS: Explaining Outliers in Data Streams. In: Wrembel, R., Gamper, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2023. Lecture Notes in Computer Science, vol 14148. Springer, Cham. https://doi.org/10.1007/978-3-031-39831-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39831-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39830-8

  • Online ISBN: 978-3-031-39831-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics