Skip to main content

A Fine-Grained Structural Partitioning Approach to Graph Compression

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2023)

Abstract

To compress a graph, some methods rely on finding highly compressible structures, such as very dense subgraphs, and encode a graph by listing these structures compressed. However, structures can overlap, leading to encoding the same information multiple times. The method we propose deals with this issue, by identifying overlaps and encoding them only once. We have tested our method on various real-world graphs. The obtained results show that our approach is efficient and outperforms state of the art methods. The source code of our algorithms, together with some sample input instances, are available at https://gitlab.liris.cnrs.fr/fpitois/fgsp.git.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Besta, M., Hoefler, T.: Survey and taxonomy of lossless graph compression and space-efficient graph representations. CoRR abs/1806.01799 (2018). http://arxiv.org/abs/1806.01799

  2. Bloem, P., de Rooij, S.: Large-scale network motif analysis using compression. Data Min. Knowl. Discov. 34(5), 1421–1453 (Sep 2020). https://doi.org/10.1007/s10618-020-00691-y

  3. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theor. Exper. 2008(10), P10008 (2008)

    Article  MATH  Google Scholar 

  4. Kang, U., Faloutsos, C.: Beyond ’caveman communities’: hubs and spokes for graph compression and mining. In: Proceedings - IEEE International Conference on Data Mining, ICDM, pp. 300–309 (12 2011). https://doi.org/10.1109/ICDM.2011.26

  5. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: applications in VLSI domain. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 7(1), 69–79 (1999)

    Google Scholar 

  6. Kiouche, A.E., Baste, J., Haddad, M., Seba, H.: A neighborhood-preserving graph summarization. CoRR abs/2101.11559 (2021). https://arxiv.org/abs/2101.11559

  7. Koutra, D., Kang, U., Vreeken, J., Faloutsos, C.: Summarizing and understanding large graphs. Stat. Anal. Data Min. ASA Data Sci. J. 8(3), 183–202 (2015). https://doi.org/10.1002/sam.11267

    Article  MathSciNet  MATH  Google Scholar 

  8. Lagraa, S., Seba, H.: An efficient exact algorithm for triangle listing in large graphs. Data Min. Knowl. Discov. 30(5), 1350–1369 (2016). https://doi.org/10.1007/s10618-016-0451-4

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, Y., Safavi, T., Dighe, A., Koutra, D.: Graph summarization methods and applications: a survey. ACM Comput. Surv. 51(3) (2018). https://doi.org/10.1145/3186727

  10. Liu, Y., Safavi, T., Shah, N., Koutra, D.: Reducing large graphs to small supergraphs: a unified approach. Soc. Netw. Anal. Min. 8(1), 1–18 (2018). https://doi.org/10.1007/s13278-018-0491-4

    Article  Google Scholar 

  11. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded error. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 419–432. SIGMOD ’08, Association for Computing Machinery, New York, NY, USA (2008). https://doi.org/10.1145/1376616.1376661

  12. Riondato, M., García-Soriano, D., Bonchi, F.: Graph summarization with quality guarantees. Data Min. Knowl. Discov. 31(2), 314–349 (2017). https://doi.org/10.1007/s10618-016-0468-8

    Article  MathSciNet  MATH  Google Scholar 

  13. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015). http://networkrepository.com

  14. Rossi, R.A., Zhou, R.: GraphZIP: a clique-based sparse graph compression method. J. Big Data 5(1), 1–14 (2018)

    Article  Google Scholar 

  15. Yang, J., Leskovec, J.: Overlapping community detection at scale: a nonnegative matrix factorization approach. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 587–596. ACM (2013)

    Google Scholar 

Download references

Acknowledgements

This work is funded by the French National Research Agency under grant ANR-20-CE23-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Pitois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pitois, F., Seba, H., Haddad, M. (2023). A Fine-Grained Structural Partitioning Approach to Graph Compression. In: Wrembel, R., Gamper, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2023. Lecture Notes in Computer Science, vol 14148. Springer, Cham. https://doi.org/10.1007/978-3-031-39831-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39831-5_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39830-8

  • Online ISBN: 978-3-031-39831-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics