Skip to main content

Sentiment Analysis Application in E-Commerce: Current Models and Future Directions

  • Conference paper
  • First Online:
Electronic Government and the Information Systems Perspective (EGOVIS 2023)

Abstract

Sentiment analysis (SA), which is also known as opinion mining, is an increasingly popular practical application of Natural Language Processing (NLP). SA is especially useful in e-commerce fields, where comments and reviews often contain a wealth of valuable business information that has great research value. This study aims to investigate three related aspects of SA in e-commerce: the methods used to address the SA problem in this domain, the most commonly used e-commerce platforms where researchers get data from, and the future direction of research in this area. To achieve this goal, we reviewed 15 papers that covered many machine learning models and deep learning models. In the results and discussion section, we suggest several future directions that can improve the current SA models in this review. By addressing the limitations of existing SA models and exploring new approaches, we believe that future research in this area will lead to more accurate and effective sentiment analysis tools that can benefit both businesses and consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, L., Dou, Z., Hu, Y., Huang, R.: Textual analysis for online reviews: a polymerization topic sentiment model. IEEE Access 7, 91940–91945 (2019)

    Article  Google Scholar 

  2. Ahmed, H.M., Javed Awan, M., Khan, N.S., Yasin, A., Faisal Shehzad, H.M.: Sentiment analysis of online food reviews using big data analytics. Elementary Educ. Online 20(2), 827–836 (2021)

    Google Scholar 

  3. Mabrouk, A., Redondo, R.P.D., Kayed, M.: SEOpinion: summarization and exploration of opinion from e-commerce websites. Sensors 21(2), 636 (2021)

    Article  Google Scholar 

  4. Jagdale, R.S., Shirsat, V.S., Deshmukh, S.N.: Sentiment analysis on product reviews using machine learning techniques. In: Mallick, P.K., Balas, V.E., Bhoi, A.K., Zobaa, A.F. (eds.) Cognitive Informatics and Soft Computing. AISC, vol. 768, pp. 639–647. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0617-4_61

    Chapter  Google Scholar 

  5. Hong, W., Zheng, C., Wu, L., Pu, X.: Analyzing the relationship between consumer satisfaction and fresh e-commerce logistics service using text mining techniques. Sustainability 11(13), 3570 (2019)

    Article  Google Scholar 

  6. Muhammad, P.F., Kusumaningrum, R., Wibowo, A.: Sentiment analysis using Word2vec and long short-term memory (LSTM) for Indonesian hotel reviews. Procedia Comput. Sci. 179, 728–735 (2021)

    Article  Google Scholar 

  7. Elmurngi, E.I., Gherbi, A.: Unfair reviews detection on Amazon reviews using sentiment analysis with supervised learning techniques. J. Comput. Sci. 14(5), 714–726 (2018)

    Article  Google Scholar 

  8. Meng, W., Wei, Y., Liu, P., Zhu, Z., Yin, H.: Aspect based sentiment analysis with feature enhanced attention CNN-BiLSTM. IEEE Access 7, 167240–167249 (2019)

    Article  Google Scholar 

  9. Liang, X., Liu, P., Wang, Z.: Hotel selection utilizing online reviews: a novel decision support model based on sentiment analysis and DL-VIKOR method. Technol. Econ. Dev. Econ. 25(6), 1139–1161 (2019)

    Article  Google Scholar 

  10. Agarap, A.F.: Statistical analysis on E-commerce reviews, with sentiment classification using bidirectional recurrent neural network (RNN). arXiv preprint arXiv:1805.03687 (2018)

  11. Yang, L., Li, Y., Wang, J., Sherratt, R.S.: Sentiment analysis for E-commerce product reviews in Chinese based on sentiment lexicon and deep learning. IEEE Access 8, 23522–23530 (2020)

    Article  Google Scholar 

  12. Shrestha, N., Nasoz, F.: Deep learning sentiment analysis of amazon.com reviews and ratings. arXiv preprint arXiv:1904.04096 (2019)

  13. Haque, T.U., Saber, N.N., Shah, F.M.: Sentiment analysis on large scale Amazon product reviews. In: 2018 IEEE International Conference on Innovative Research and Development (ICIRD), pp. 1–6. IEEE, May 2018

    Google Scholar 

  14. Sari, P.K., Alamsyah, A., Wibowo, S.: Measuring e-Commerce service quality from online customer review using sentiment analysis. J. Phys. Conf. Ser. 971(1), 012053 (2018)

    Article  Google Scholar 

  15. Zhang, S., Wei, Z., Wang, Y., Liao, T.: Sentiment analysis of Chinese micro-blog text based on extended sentiment dictionary. Future Gener. Comput. Syst. 81, 395–403 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, H., Asemi, A., Mustafa, M.B. (2023). Sentiment Analysis Application in E-Commerce: Current Models and Future Directions. In: Kö, A., Francesconi, E., Asemi, A., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Electronic Government and the Information Systems Perspective. EGOVIS 2023. Lecture Notes in Computer Science, vol 14149. Springer, Cham. https://doi.org/10.1007/978-3-031-39841-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39841-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39840-7

  • Online ISBN: 978-3-031-39841-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics