Skip to main content

Co-location Pattern Mining Under the Spatial Structure Constraint

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2023)

Abstract

Most methods to find spatial co-location patterns (subsets of object features that are geographically close to one another) employ standard proximity measures (e.g. Euclidean distance). But for some applications, these measures do not work well since the spatial structure is not considered. This article proposes CSS-Miner, a co-location pattern mining approach under the spatial structure constraint. In this case, the street network of a city is used as a constraint. CSS-Miner has been applied to two real datasets with different points of interest.

This work was supported by the ANR Grant SpiRAL ANR-19-CE35-0006-02.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    opendata.paris.fr/, data.iledefrance.fr/, data.cityofchicago.org/.

References

  1. Bao, X., Wang, L.: A clique-based approach for co-location pattern mining. Inf. Sci. 490, 244–264 (2019)

    Article  Google Scholar 

  2. Boeing, G.: OSMnx: new methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 65, 126–139 (2017)

    Article  Google Scholar 

  3. Cazals, F., Karande, C.: A note on the problem of reporting maximal cliques. Theor. Comput. Sci. 407(1–3), 564–568 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dijkstra, E.W., et al.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  5. Flouvat, F., Van Soc, J.F.N., Desmier, E., Selmaoui-Folcher, N.: Domain-driven co-location mining: extraction, visualization and integration in a GIS. GeoInformatica 19, 147–183 (2015)

    Article  Google Scholar 

  6. Huang, Y., Shekhar, S., Xiong, H.: Discovering colocation patterns from spatial data sets: a general approach. IEEE Trans. Knowl. Data Eng. 16(12), 1472–1485 (2004)

    Article  Google Scholar 

  7. Kim, S.K., Lee, J.H., Ryu, K.H., Kim, U.: A framework of spatial co-location pattern mining for ubiquitous GIS. Multimed. Tools Appl. 71(1), 199–218 (2014)

    Article  Google Scholar 

  8. Koperski, K., Han, J.: Discovery of spatial association rules in geographic information databases. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 47–66. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60159-7_4

    Chapter  Google Scholar 

  9. Shekhar, S., Huang, Y.: Discovering spatial co-location patterns: a summary of results. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 236–256. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-47724-1_13

    Chapter  MATH  Google Scholar 

  10. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. Theor. Comput. Sci. 363, 28–42 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tran, V., Wang, L., Chen, H., Xiao, Q.: MCHT: a maximal clique and hash table-based maximal prevalent co-location pattern mining algorithm. Expert Syst. Appl. 175, 114830 (2021)

    Article  Google Scholar 

  12. Vaira, G., Kurasova, O.: Parallel bidirectional Dijkstra’s shortest path algorithm. Databases Inf. Syst. VI Front. Artif. Intell. Appl. 224, 422–435 (2011)

    Google Scholar 

  13. Valiant, L.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3), 410–421 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yoo, J.S., Shekhar, S.: A joinless approach for mining spatial colocation patterns. IEEE Trans. Knowl. Data Eng. 18(10), 1323–1337 (2006)

    Article  Google Scholar 

  15. Yu, W.: Spatial co-location pattern mining for location-based services in road networks. Expert Syst. Appl. 46, 324–335 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigue Govan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Govan, R., Selmaoui-Folcher, N., Giannakos, A., Fournier-Viger, P. (2023). Co-location Pattern Mining Under the Spatial Structure Constraint. In: Strauss, C., Amagasa, T., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2023. Lecture Notes in Computer Science, vol 14146. Springer, Cham. https://doi.org/10.1007/978-3-031-39847-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39847-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39846-9

  • Online ISBN: 978-3-031-39847-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics