Skip to main content

A Multitask Deep Learning Approach for Staples and Wound Segmentation in Abdominal Post-surgical Images

  • Conference paper
  • First Online:
Fuzzy Logic and Technology, and Aggregation Operators (EUSFLAT 2023, AGOP 2023)

Abstract

Deep learning techniques provide a powerful and versatile tool in different areas, such as object segmentation in medical images. In this paper, we propose a network based on the U-Net architecture to perform the segmentation of wounds and staples in abdominal surgery images. Moreover, since both tasks are highly interdependent, we propose a multitask architecture that allows to simultaneously obtain, in the same network evaluation, the masks with the staples and wound location of the image. When performing this multitasking, it is necessary to formulate a global loss function that linearly combines the losses of both partial tasks. This is why the study also involves the GradNorm algorithm to determine which weight is associated to each loss function during each training step. The main conclusion of the study is that multitask segmentation offers superior performance compared to segmenting by separate tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alenezi, F., Armghan, A., Polat, K.: A novel multi-task learning network based on melanoma segmentation and classification with skin lesion images. Diagnostics 13(2), 262 (2023)

    Article  Google Scholar 

  2. Chen, Y.W., Hsu, J.T., Hung, C.C., Wu, J.M., Lai, F., Kuo, S.Y.: Surgical wounds assessment system for self-care. IEEE Trans. Syst. Man Cybern. Syst. 50(12), 5076–5091 (2020)

    Article  Google Scholar 

  3. Chen, Z., Badrinarayanan, V., Lee, C.Y., Rabinovich, A.: Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks. In: International Conference on Machine Learning, pp. 794–803. PMLR (2018)

    Google Scholar 

  4. Chino, D.Y., Scabora, L.C., Cazzolato, M.T., Jorge, A.E., Traina, C., Jr., Traina, A.J.: Segmenting skin ulcers and measuring the wound area using deep convolutional networks. Comput. Methods Programs Biomed. 191, 105376 (2020)

    Article  Google Scholar 

  5. González-Hidalgo, M., et al.: Detection and automatic deletion of staples in images of wound of abdominal surgery for m-health applications. In: Tavares, J.M.R.S., Natal Jorge, R.M. (eds.) VipIMAGE 2019. LNCVB, vol. 34, pp. 219–229. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32040-9_23

    Chapter  Google Scholar 

  6. González-Hidalgo, M., Munar, M., Bibiloni, P., Moyà-Alcover, G., Craus-Miguel, A., Segura-Sampedro, J.J.: Detection of infected wounds in abdominal surgery images using fuzzy logic and fuzzy sets. In: 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 99–106 (2019)

    Google Scholar 

  7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings (2015)

    Google Scholar 

  8. Liu, C., Fan, X., Guo, Z., Mo, Z., Chang, E.I.C., Xu, Y.: Wound area measurement with 3D transformation and smartphone images. BMC Bioinform. 20(1), 724 (2019)

    Article  Google Scholar 

  9. Mahbod, A., Schaefer, G., Ecker, R., Ellinger, I.: Automatic foot ulcer segmentation using an ensemble of convolutional neural networks. In: 26th International Conference on Pattern Recognition (ICPR), pp. 4358–4364. IEEE Computer Society, Los Alamitos, CA, USA (2022)

    Google Scholar 

  10. Martínez-Ramos, C., Cerdán, M.T., López, R.S.: Mobile phone-based telemedicine system for the home follow-up of patients undergoing ambulatory surgery. Telemed. e-Health 15(6), 531–537 (2009)

    Article  Google Scholar 

  11. Ng, H.J.H., Huang, D., Rajaratnam, V.: Diagnosing surgical site infections using telemedicine: a systematic review. Surgeon 20(4), e78–e85 (2022)

    Article  Google Scholar 

  12. Oliveira, B., et al.: A multi-task convolutional neural network for classification and segmentation of chronic venous disorders. Sci. Rep. 13(1), 761 (2023)

    Article  Google Scholar 

  13. Oota, S.R., Rowtula, V., Mohammed, S., Galitz, J., Liu, M., Gupta, M.: Healtech - a system for predicting patient hospitalization risk and wound progression in old patients. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 2462–2471 (2021)

    Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Segura-Sampedro, J.J., Rivero-Belenchón, I., et al.: Feasibility and safety of surgical wound remote follow-up by smart phone in appendectomy: a pilot study. Ann. Med. Surg. 21, 58–62 (2017)

    Article  Google Scholar 

  16. Sun, Q., Deng, L., Liu, J., Huang, H., Yuan, J., Tang, X.: Patch-based deep convolutional neural network for corneal ulcer area segmentation. In: Cardoso, M.J., et al. (eds.) FIFI/OMIA -2017. LNCS, vol. 10554, pp. 101–108. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67561-9_11

    Chapter  Google Scholar 

  17. Talavera-Martínez, L., Bibiloni, P., González-Hidalgo, M.: A multitasking learning framework for dermoscopic image analysis. In: Tavares, J.M.R.S., Papa, J.P., González Hidalgo, M. (eds.) CIARP 2021. LNCS, vol. 12702, pp. 34–44. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93420-0_4

    Chapter  Google Scholar 

  18. Talavera-Martínez, L., Bibiloni, P., Giacaman, A., Taberner, R., Del Pozo Hernando, L.J., González-Hidalgo, M.: A novel approach for skin lesion symmetry classification with a deep learning model. Comput. Biol. Med. 145, 105450 (2022)

    Article  Google Scholar 

  19. Wang, C., Anisuzzaman, D.M., Williamson, V., Dhar, M.K., Rostami, B., Niezgoda, J., Gopalakrishnan, S., Yu, Z.: Fully automatic wound segmentation with deep convolutional neural networks. Sci. Rep. 10(1), 21897 (2020)

    Article  Google Scholar 

  20. Wu, J.M., Tsai, C.J., Ho, T.W., Lai, F., Tai, H.C., Lin, M.T.: A unified framework for automatic detection of wound infection with artificial intelligence. Appl. Sci. 10(15), 5353 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the R+D+i Project PID2020-113870GB-I00-“Desarrollo de herramientas de Soft Computing para la Ayuda al Diagnóstico Clínico y a la Gestión de Emergencias (HESOCODICE)”,

funded by MCIN/AEI/10.13039/501100011033/. Project PID2019-104829RA-I00 “EXPLainable Artificial INtelligence systems for health and well-beING (EXPLAINING)” funded by MCIN/AEI/10.13039/501100011033.

Miquel Miró-Nicolau benefited from the fellowship FPI/035/2020 from Govern de les Illes Balears.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel González-Hidalgo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moyà-Alcover, G., Miró-Nicolau, M., Munar, M., González-Hidalgo, M. (2023). A Multitask Deep Learning Approach for Staples and Wound Segmentation in Abdominal Post-surgical Images. In: Massanet, S., Montes, S., Ruiz-Aguilera, D., González-Hidalgo, M. (eds) Fuzzy Logic and Technology, and Aggregation Operators. EUSFLAT AGOP 2023 2023. Lecture Notes in Computer Science, vol 14069. Springer, Cham. https://doi.org/10.1007/978-3-031-39965-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39965-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39964-0

  • Online ISBN: 978-3-031-39965-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics