Skip to main content

A Fuzzy Cognitive Map Learning Approach for Coronary Artery Disease Diagnosis in Nuclear Medicine

  • Conference paper
  • First Online:
Fuzzy Logic and Technology, and Aggregation Operators (EUSFLAT 2023, AGOP 2023)

Abstract

Coronary artery disease (CAD) is the primary cause of death and chronic disability among cardiovascular conditions worldwide. Its diagnosis is challenging and cost-effective. In this research work, Fuzzy Cognitive Maps with Particle Swarm Optimization (FCM-PSO) were used for CAD classification (healthy and diseased). In particular, a new DeepFCM framework, which integrates image and clinical data of the patients is proposed. In this context, we employed the FCM-PSO method enhanced by experts’ knowledge, along with an efficient attention Convolutional Neural Network, to improve diagnosis. The proposed method is evaluated using 571 participants and achieved 77.95 ± 5.58% accuracy, 0.22 ± 0.05 loss, 76.98 ± 8.27% sensitivity, 77.39 ± 7.13% specificity, and 73.97 ± 0.09% precision, implementing a 10-fold cross-validation process. The results extracted from the proposed model demonstrate the model’s efficiency and outperform traditional machine learning algorithms. An essential asset of the proposed DeepFCM framework is the explainability, as it offers nuclear physicians’ meaningful causal relationships between clinical factors regarding the diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McCullough, P.A.: Coronary artery disease. Clin. J. Am. Soc. Nephrol. 2, 611 (2007). https://doi.org/10.2215/CJN.03871106

    Article  Google Scholar 

  2. Papandrianos, N., Papageorgiou, E.: Automatic diagnosis of coronary artery disease in SPECT myocardial perfusion imaging employing deep learning. Appl. Sci. 11, 6362 (2021). https://doi.org/10.3390/app11146362

    Article  Google Scholar 

  3. Apostolopoulos, I.D., Papathanasiou, N.D., Spyridonidis, T., Apostolopoulos, D.J.: Automatic characterization of myocardial perfusion imaging polar maps employing deep learning and data augmentation. Hell. J. Nucl. Med. 23, 125–132 (2020). https://doi.org/10.1967/s002449912101

    Article  Google Scholar 

  4. Zreik, M., et al.: Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis. Med. Image Anal. 44, 72–85 (2018). https://doi.org/10.1016/j.media.2017.11.008

    Article  Google Scholar 

  5. Papandrianos, N.I., Apostolopoulos, I.D., Feleki, A., Apostolopoulos, D.J., Papageorgiou, E.I.: Deep learning exploration for SPECT MPI polar map images classification in coronary artery disease. Ann. Nucl. Med. 36, 823–833 (2022). https://doi.org/10.1007/s12149-022-01762-4

    Article  Google Scholar 

  6. Papandrianos, N.I., Feleki, A., Moustakidis, S., Papageorgiou, E.I., Apostolopoulos, I.D., Apostolopoulos, D.J.: An explainable classification method of SPECT myocardial perfusion images in nuclear cardiology using deep learning and grad-CAM. Appl. Sci. 12, 7592 (2022). https://doi.org/10.3390/app12157592

    Article  Google Scholar 

  7. Apostolopoulos, I.D., Groumpos, P.P.: Non - invasive modelling methodology for the diagnosis of coronary artery disease using fuzzy cognitive maps. Comput. Methods Biomech. Biomed. Eng. 23, 879–887 (2020). https://doi.org/10.1080/10255842.2020.1768534

    Article  Google Scholar 

  8. Papageorgiou, E.I., et al.: Brain tumor characterization using the soft computing technique of fuzzy cognitive maps. Appl. Soft Comput. 8, 820–828 (2008). https://doi.org/10.1016/j.asoc.2007.06.006

    Article  Google Scholar 

  9. Nasiriyan-Rad, H., Amirkhani, A., Naimi, A., Mohammadi, K.: Learning fuzzy cognitive map with PSO algorithm for grading celiac disease. In: 2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering (ICBME), pp. 341–346 (2016). https://doi.org/10.1109/ICBME.2016.7890984

  10. Papageorgiou, E.I., Kannappan, A.: Fuzzy cognitive map ensemble learning paradigm to solve classification problems: application to autism identification. Appl. Soft Comput. 12, 3798–3809 (2012). https://doi.org/10.1016/j.asoc.2012.03.064

    Article  Google Scholar 

  11. Papageorgiou, E.I., Papandrianos, N.I., Apostolopoulos, D.J., Vassilakos, P.J.: Fuzzy Cognitive Map based decision support system for thyroid diagnosis management. In: 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), pp. 1204–1211 (2008). https://doi.org/10.1109/FUZZY.2008.4630524

  12. Carvajal, O., Melin, P., Miramontes, I., Prado-Arechiga, G.: Optimal design of a general type-2 fuzzy classifier for the pulse level and its hardware implementation. Eng. Appl. Artif. Intell. 97, 104069 (2021). https://doi.org/10.1016/j.engappai.2020.104069

    Article  Google Scholar 

  13. Guzmán, J.C., Miramontes, I., Melin, P., Prado-Arechiga, G.: Optimal genetic design of type-1 and interval type-2 fuzzy systems for blood pressure level classification. Axioms 8, 8 (2019). https://doi.org/10.3390/axioms8010008

    Article  Google Scholar 

  14. Miramontes, I., Melin, P.: Interval type-2 fuzzy approach for dynamic parameter adaptation in the bird swarm algorithm for the optimization of fuzzy medical classifier. Axioms 11, 485 (2022). https://doi.org/10.3390/axioms11090485

    Article  Google Scholar 

  15. Hoyos, W., Aguilar, J., Toro, M.: A clinical decision-support system for dengue based on fuzzy cognitive maps. Health Care Manag. Sci. 25, 666–681 (2022). https://doi.org/10.1007/s10729-022-09611-6

    Article  Google Scholar 

  16. Kosko, B.: Fuzzy cognitive maps. Int. J. Man-Mach. Stud. 24, 65–75 (1986). https://doi.org/10.1016/S0020-7373(86)80040-2

    Article  MATH  Google Scholar 

  17. Sovatzidi, G., Vasilakakis, M.D., Iakovidis, D.K.: IF3: an interpretable feature fusion framework for lesion risk assessment based on auto-constructed fuzzy cognitive maps. In: Ali, S., van der Sommen, F., Papież, B.W., van Eijnatten, M., Jin, Y., Kolenbrander, I. (eds.) CaPTion 2022. LNCS, vol. 13581, pp. 77–86. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17979-2_8

  18. Wang, D., Tan, D., Liu, L.: Particle swarm optimization algorithm: an overview. Soft. Comput. 22(2), 387–408 (2017). https://doi.org/10.1007/s00500-016-2474-6

    Article  Google Scholar 

  19. Raja, J.B., Pandian, S.C.: PSO-FCM based data mining model to predict diabetic disease. Comput. Methods Programs Biomed. 196, 105659 (2020). https://doi.org/10.1016/j.cmpb.2020.105659

    Article  Google Scholar 

Download references

Acknowledgments

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects to support Faculty Members & Researchers” (Project Number: 3656).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos I. Papandrianos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feleki, A., Apostolopoulos, I.D., Papageorgiou, K., Papageorgiou, E.I., Apostolopoulos, D.J., Papandrianos, N.I. (2023). A Fuzzy Cognitive Map Learning Approach for Coronary Artery Disease Diagnosis in Nuclear Medicine. In: Massanet, S., Montes, S., Ruiz-Aguilera, D., González-Hidalgo, M. (eds) Fuzzy Logic and Technology, and Aggregation Operators. EUSFLAT AGOP 2023 2023. Lecture Notes in Computer Science, vol 14069. Springer, Cham. https://doi.org/10.1007/978-3-031-39965-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39965-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39964-0

  • Online ISBN: 978-3-031-39965-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics