Skip to main content

On an Edge Detector Based on Ordinal Sums of Conjunctive and Disjunctive Aggregation Functions

  • Conference paper
  • First Online:
Fuzzy Logic and Technology, and Aggregation Operators (EUSFLAT 2023, AGOP 2023)

Abstract

Aggregation functions have been used in the last decade in several edge detectors with notable success. Recently, a new family of aggregation functions defined as ordinal sums of conjunctive and disjunctive aggregation functions have been introduced with good results in classification problems. Due to this performance, in this paper, this family is considered in the aggregation step of the edge detection algorithm based on uninorms. This new edge detector is compared with other classical edge detectors concluding that this class of ordinal sums is a feasible family to be used for edge detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The performance of the edge detector is similar if a decreasing order is applied.

  2. 2.

    These regions contain mostly textures and an edge detector should not be penalized whatever result it obtains.

References

  1. Barrenechea, E., Bustince, H., De Baets, B., Lopez-Molina, C.: Construction of interval-valued fuzzy relations with application to the generation of fuzzy edge images. IEEE Trans. Fuzzy Syst. 19(5), 819–830 (2011)

    Article  Google Scholar 

  2. Bowyer, K., Kranenburg, C., Dougherty, S.: Edge detector evaluation using empirical ROC curves. In: Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 354–359 (1999)

    Google Scholar 

  3. Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J.: Interval-valued fuzzy sets constructed from matrices: application to edge detection. Fuzzy Sets Syst. 160(13), 1819–1840 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fodor, J., Yager, R., Rybalov, A.: Structure of uninorms. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 5, 411–428 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall Inc., Hoboken (2006)

    Google Scholar 

  6. González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: On the generalization of the fuzzy morphological operators for edge detection. In: Alonso, J.M., et al. (eds.) 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT 2015). Atlantis Press (2015)

    Google Scholar 

  7. González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: On the generalization of the uninorm morphological gradient. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2015. LNCS, vol. 9095, pp. 436–449. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19222-2_37

    Chapter  Google Scholar 

  8. González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: A new edge detector based on uninorms. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014. CCIS, vol. 443, pp. 184–193. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08855-6_19

    Chapter  MATH  Google Scholar 

  9. González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: On the choice of the pair conjunction-implication into the fuzzy morphological edge detector. IEEE Trans. Fuzzy Syst. 23(4), 872–884 (2015)

    Article  Google Scholar 

  10. Grigorescu, C., Petkov, N., Westenberg, M.: Contour detection based on nonclassical receptive field inhibition. IEEE Trans. Image Process. 12(7), 729–739 (2003)

    Article  Google Scholar 

  11. Hudec, M., Mináriková, E., Mesiar, R.: Aggregation functions in flexible classification by ordinal sums. In: Ciucci, D., et al. (eds.) IPMU 2022. CCIS, vol. 1601, pp. 372–383. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08971-8_31

    Chapter  Google Scholar 

  12. Hudec, M., Mináriková, E., Mesiar, R., Saranti, A., Holzinger, A.: Classification by ordinal sums of conjunctive and disjunctive functions for explainable AI and interpretable machine learning solutions. Knowl.-Based Syst. 220, 106916 (2021)

    Article  Google Scholar 

  13. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. TREN, Springer, Dordrecht (2000). https://doi.org/10.1007/978-94-015-9540-7

    Book  MATH  Google Scholar 

  14. Mas, M., Massanet, S., Ruiz-Aguilera, D., Torrens, J.: A survey on the existing classes of uninorms. J. Intell. Fuzzy Syst. 29, 1021–1037 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Papari, G., Petkov, N.: Edge and line oriented contour detection: state of the art. Image Vis. Comput. 29(2–3), 79–103 (2011)

    Article  Google Scholar 

  16. Pratt, W.K.: Digital Image Processing: PIKS Scientific Inside. Wiley, Hoboken (2007)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the R+D+i Project PID2020-113870GB-I00-“Desarrollo de herramientas de Soft Computing para la Ayuda al Diagnóstico Clínico y a la Gestión de Emergencias (HESOCODICE)”, funded by MCIN/AEI/10.13039/501100011033/, the KEGA No. 025EU-4/2021 by the Ministry of Education, Science, Research and Sport of the Slovak Republic, and SGS SP2023/078 by the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Munar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Munar, M., Hudec, M., Massanet, S., Mináriková, E., Ruiz-Aguilera, D. (2023). On an Edge Detector Based on Ordinal Sums of Conjunctive and Disjunctive Aggregation Functions. In: Massanet, S., Montes, S., Ruiz-Aguilera, D., González-Hidalgo, M. (eds) Fuzzy Logic and Technology, and Aggregation Operators. EUSFLAT AGOP 2023 2023. Lecture Notes in Computer Science, vol 14069. Springer, Cham. https://doi.org/10.1007/978-3-031-39965-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39965-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39964-0

  • Online ISBN: 978-3-031-39965-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics