Skip to main content

Analysis of the Number of Valid Peterson’s Syllogisms

  • Conference paper
  • First Online:
Fuzzy Logic and Technology, and Aggregation Operators (EUSFLAT 2023, AGOP 2023)

Abstract

This publication aims to continue the study of fuzzy Peterson’s logical syllogisms with fuzzy intermediate quantifiers. The main idea of this article is not to formally or semantically prove the validity of syllogisms, as was the case in previous publications. The main idea is to find a mathematical formula by which we are able to derive the number of valid Peterson syllogisms based on the number of intermediate quantifiers.

Supported by OP PIK CZ.01.1.02/0.0/0.0/17147/0020575 AI-Met4Laser: Consortium for industrial research and development of new applications of laser technologies using artificial intelligence methods (10/2020–6/2023), of the Ministry of Industry and Trade of the Czech Republic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In Peterson’s approach, we use the term valid syllogism. Our definition is based on strong conjunction then we use the term strongly valid syllogism.

  2. 2.

    Many authors speak about terms instead of formulas. We call SPM formulas as is common in logic.

  3. 3.

    We count affirmative and negative form of the same quantifier as one quantifier. The number of quantifiers on the page xx is \(k=5\).

  4. 4.

    The size of the quantifier “Q B’s are A” is determined by the proportion of B which has the property A.

References

  1. Cignoli, R.L.O., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Kluwer, Dordrecht (2000)

    Book  MATH  Google Scholar 

  2. Fiala, K. Červeňová, V., Murinová, P.: On modelling of generalized Peterson’s syllogisms with more premises. In: Atlantis Studies in Uncertainty Modelling 2021–09-19 Bratislava, pp. 375–382 (2021)

    Google Scholar 

  3. Keenan, E.L., Westerståhl, D.: Generalized quantifiers in linguistics and logic. In: Benthem, J.V., Meulen, A.T. (eds.), Handbook of Logic and Language, Elsevier Ch. 15, pp. 837–893 (1997)

    Google Scholar 

  4. Lindström, P.: First order predicate logic with generalized quantifiers. Theoria 32, 186–195 (1966)

    MathSciNet  MATH  Google Scholar 

  5. Mostowski, A.: On a generalization of quantifiers. Fundam. Math. 44, 12–36 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  6. Murinová, P., Novák, V.: A formal theory of generalized intermediate syllogisms. Fuzzy Sets Syst. 186, 47–80 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Murinová, P., Novák, V.: The structure of generalized intermediate syllogisms. Fuzzy Sets Syst. 247, 18–37 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Murinová, P., Novák, V.: The theory of intermediate quantifiers in fuzzy natural logic revisited and the model of “many.” Fuzzy Sets Syst. 388, 56–89 (2020)

    Google Scholar 

  9. Novák, V.: A comprehensive theory of trichotomous evaluative linguistic expressions. Fuzzy Sets Syst. 159(22), 2939–2969 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Novák, V.: A formal theory of intermediate quantifiers. Fuzzy Sets Syst. 159(10), 1229–1246 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Novák, V., Perfilieva, I., Dvořák, A.: Insight into Fuzzy Modeling. Wiley & Sons, Hoboken, New Jersey (2016)

    Book  MATH  Google Scholar 

  12. Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer, Boston (1999)

    Book  MATH  Google Scholar 

  13. Pereira-Fariña, M., Vidal, J.C., Díaz-Hermida, F., Bugarín, A.: A fuzzy syllogistic reasoning schema for generalized quantifiers. Fuzzy Sets Syst. 234, 79–96 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Peterson, P.: Intermediate Quantifiers. Logic, Linguistics, and Aristotelian Semantics. Ashgate, Aldershot (2000)

    Google Scholar 

  15. Thompson, B.E.: Syllogisms using “few”, “many” and “most.” Notre Dame J. Form. Log. 23, 75–84 (1982)

    Google Scholar 

  16. Yager, R.R.: Reasoning with fuzzy quantified statements: part II. Kybernetes 15, 111–120 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  18. Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages. Comput. Math. 9, 149–184 (1983)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Fiala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fiala, K., Murinová, P. (2023). Analysis of the Number of Valid Peterson’s Syllogisms. In: Massanet, S., Montes, S., Ruiz-Aguilera, D., González-Hidalgo, M. (eds) Fuzzy Logic and Technology, and Aggregation Operators. EUSFLAT AGOP 2023 2023. Lecture Notes in Computer Science, vol 14069. Springer, Cham. https://doi.org/10.1007/978-3-031-39965-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39965-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39964-0

  • Online ISBN: 978-3-031-39965-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics