Skip to main content

A Logic to Reason About f-Indices of Inclusion over Ł\(_n\)

  • Conference paper
  • First Online:
Fuzzy Logic and Technology, and Aggregation Operators (EUSFLAT 2023, AGOP 2023)

Abstract

In this paper we provide a sound and complete logic to formalise and reason about f-indices of inclusion. The logic is based on finite-valued Łukasiewicz logic Ł\(_n\) and its S5-like modal extension S5(Ł\(_n\)) with additional unary operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the sake of simplicity, along this paper we will use the same symbol to denote both a logical language \(\mathcal{L}\) and its corresponding set of formulas \(Fm_\mathcal{L}\) built in the usual way. This will be done with no danger of confusion.

  2. 2.

    Actually, we will henceforth identify both notations \(\sigma \) and (wS) to indicate this map, and we can even write \(\sigma = (w, S)\).

  3. 3.

    Indeed, if \(w(\varphi ) = r_0\), then \(w(\psi ) = \max _r \min ( w(\varDelta (\varphi \equiv \overline{r}), \tau (r)) = \)

    \( = \max (\max _{r \ne r_0} w(\varDelta (\varphi \equiv \overline{r}) \wedge \overline{\tau (r)}), w(\varDelta (\varphi \equiv \overline{r_0}) \wedge \overline{\tau (r_0)}) = \max (0, \min (1, \tau (r_0)) =\)

    \( = 0 \vee \tau (r_0) = \tau (w(\varphi ))\).

References

  1. Baaz, M.: Infinite-valued Gödel logics with \(0\)-\(1\)-projections and relativizations. Lect. Notes Logic 6, 23–33 (1996)

    Article  MATH  Google Scholar 

  2. Blondeel, M., Flaminio, T., Schockaert, S., Godo, L., Cock, M.D.: On the relationship between fuzzy autoepistemic logic and fuzzy modal logics of belief. Fuzzy Sets Syst. 276, 74–99 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ciabattoni, A., Metcalfe, G., Montagna, F.: Algebraic and proof-theoretic characterizations of truth stressers for MTL and its extensions. Fuzzy Sets Syst. 161(3), 369–389 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic foundations of many-valued reasoning. Trends in Logic-Studia Logica Library, vol. 7. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  5. Esteva, F., Godo, L., Noguera, C.: A logical approach to fuzzy truth hedges. Inf. Sci. 232, 366–385 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fan, J., Xie, W., Pei, J.: Subsethood measure: new definitions. Fuzzy Sets Syst. 106, 201–209 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hájek, P.: On very true. Fuzzy Sets Syst. 124(3), 329–333 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kitainik, L.M.: Fuzzy inclusions and fuzzy dichotomous decision procedures. In: Kacprzyk, J., Orlovski, S.A. (eds.) Optimization Models Using Fuzzy Sets and Possibility Theory. Theory and Decision Library, vol. 4, pp. 154–170. Springer, Netherlands, Dordrecht (1987). https://doi.org/10.1007/978-94-009-3869-4_11

    Chapter  Google Scholar 

  9. Madrid, N., Ojeda-Aciego, M.: A view of f-indexes of inclusion under different axiomatic definitions of fuzzy inclusion. In: Moral, S., Pivert, O., Sánchez, D., Marín, N. (eds.) SUM 2017. LNCS (LNAI), vol. 10564, pp. 307–318. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67582-4_22

    Chapter  Google Scholar 

  10. Madrid, N., Ojeda-Aciego, M.: Functional degrees of inclusion and similarity between L-fuzzy sets. Fuzzy Sets Syst. 390, 1–22 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Madrid, N., Ojeda-Aciego, M.: The \(f\)-index of inclusion as optimal adjoint pair for fuzzy modus ponens. Fuzzy Sets Syst. 466, 108474 (2023)

    Article  MathSciNet  Google Scholar 

  12. Madrid, N., Ojeda-Aciego, M., Perfilieva, I.: f-inclusion indexes between fuzzy sets. In: Alonso, J.M., et al. (eds.) Proceedings of IFSA-EUSFLAT 2015, AISR 89, Atlantis Press, pp. 1528–1533 (2015)

    Google Scholar 

  13. Monteiro, A.: Sur les algèbres de Heyting simétriques. Portugal. Math. 39, 1–237 (1980)

    MathSciNet  Google Scholar 

  14. Sinha, D., Dougherty, E.: Fuzzification of set inclusion: theory and applications. Fuzzy Sets Syst. 55, 15–42 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Vychodil, V.: Truth-depressing hedges and BL-logic. Fuzzy Sets Syst. 157(15), 2074–2090 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Young, V.: Fuzzy subsethood. Fuzzy Sets Syst. 77, 371–384 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Flaminio and Godo acknowledge partial support by the MOSAIC project (EU H2020-MSCA-RISE-2020 Project 101007627) and by the Spanish project PID2019-111544GB-C21/AEI/10.13039/501100011033. Madrid and Ojeda-Aciego acknowledge partial support by the project VALID (PID2022-140630NB-I00 funded by MCIN/AEI/10.13039/501100011033), and by Plan Propio de la Universidad de Málaga.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Flaminio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Flaminio, T., Godo, L., Madrid, N., Ojeda-Aciego, M. (2023). A Logic to Reason About f-Indices of Inclusion over Ł\(_n\). In: Massanet, S., Montes, S., Ruiz-Aguilera, D., González-Hidalgo, M. (eds) Fuzzy Logic and Technology, and Aggregation Operators. EUSFLAT AGOP 2023 2023. Lecture Notes in Computer Science, vol 14069. Springer, Cham. https://doi.org/10.1007/978-3-031-39965-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39965-7_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39964-0

  • Online ISBN: 978-3-031-39965-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics