Skip to main content

A Specialized Xie-Beni Measure for Clustering with Adaptive Distance

  • Conference paper
  • First Online:
Fuzzy Logic and Technology, and Aggregation Operators (EUSFLAT 2023, AGOP 2023)

Abstract

To certify good data partitioning, it is necessary to use an evaluation measure. This measure must take into account the specificity of the modeled partition. For centroid-based fuzzy partitioning, different measures exist. However, none of them takes into account the adaptive distance that some clustering models use. In our study, we extend the Xie-Beni measure, using both the Mahalanobis distance and the Wasserstein distance. The numerical results show the relevance of our new index.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://archive.ics.uci.edu/ml/datasets.php.

References

  1. Antoine, V., Quost, B., Masson, M.H., Denoeux, T.: CECM: constrained evidential c-means algorithm. Comput. Stat. Data Anal. 56(4), 894–914 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J.M., Perona, I.: An extensive comparative study of cluster validity indices. Pattern Recogn. 46(1), 243–256 (2013)

    Article  Google Scholar 

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  4. Bezdek, J.C.: Fuzzy mathematics in pattern classification. Cornell University (1973)

    Google Scholar 

  5. Bezdek, J.C.: Numerical taxonomy with fuzzy sets. J. Math. Biol. 1(1), 57–71 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bezdek, J.C.: Objective function clustering. In: Bezdek, J.C. (ed.) Pattern Recognition with Fuzzy Objective Function Algorithms. AAPR, pp. 43–93. Springer, Boston, MA (1981). https://doi.org/10.1007/978-1-4757-0450-1_3

    Chapter  MATH  Google Scholar 

  7. Bezdek, J., Dunn, J.: Optimal fuzzy partitions: a heuristic for estimating the parameters in a mixture of normal distributions. IEEE Trans. Comput. 100(8), 835–838 (1975)

    Article  MATH  Google Scholar 

  8. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning in semi-supervised clustering. In: Proceedings of the Twenty-First International Conference on Machine Learning, p. 11 (2004)

    Google Scholar 

  9. Fukuyama, Y.: A new method of choosing the number of clusters for the fuzzy c-mean method. In: 1989 Proceedings of the 5th Fuzzy System Symposium, pp. 247–250 (1989)

    Google Scholar 

  10. Gath, I., Geva, A.B.: Unsupervised optimal fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 773–780 (1989)

    Article  MATH  Google Scholar 

  11. Ghosh, A., Mishra, N.S., Ghosh, S.: Fuzzy clustering algorithms for unsupervised change detection in remote sensing images. Inf. Sci. 181(4), 699–715 (2011)

    Article  Google Scholar 

  12. Gustafson, D., Kessel, W.: Fuzzy clustering with a fuzzy covariance matrix. In: 1978 IEEE Conference on Decision and Control Including the 17th Symposium on Adaptive Processes, pp. 761–766. IEEE (1979)

    Google Scholar 

  13. Huang, C., Molisch, A.F., Geng, Y.A., He, R., Ai, B., Zhong, Z.: Trajectory-joint clustering algorithm for time-varying channel modeling. IEEE Trans. Veh. Technol. 69(1), 1041–1045 (2019)

    Article  Google Scholar 

  14. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  MATH  Google Scholar 

  15. Kantorovich, L.V.: Mathematical methods of organizing and planning production. Manage. Sci. 6(4), 366–422 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mitra, S., Pedrycz, W., Barman, B.: Shadowed C-means: integrating fuzzy and rough clustering. Pattern Recogn. 43(4), 1282–1291 (2010)

    Article  MATH  Google Scholar 

  17. Rezaei, M., Fränti, P.: Can the number of clusters be determined by external indices? IEEE Access 8, 89239–89257 (2020)

    Article  Google Scholar 

  18. Valle, M.E., Francisco, S., Granero, M.A., Velasco-Forero, S.: Measuring the irregularity of vector-valued morphological operators using wasserstein metric. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) DGMM 2021. LNCS, vol. 12708, pp. 512–524. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76657-3_37

    Chapter  Google Scholar 

  19. Vaserstein, L.N.: Markov processes over denumerable products of spaces, describing large systems of automata. Probl. Peredachi Inform. 5(3), 64–72 (1969)

    MathSciNet  MATH  Google Scholar 

  20. Wu, K.L., Yang, M.S.: A cluster validity index for fuzzy clustering. Pattern Recognit. Lett. 26(9), 1275–1291 (2005)

    Article  MathSciNet  Google Scholar 

  21. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13(08), 841–847 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Albert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, S., Albert, B., Antoine, V., Koko, J. (2023). A Specialized Xie-Beni Measure for Clustering with Adaptive Distance. In: Massanet, S., Montes, S., Ruiz-Aguilera, D., González-Hidalgo, M. (eds) Fuzzy Logic and Technology, and Aggregation Operators. EUSFLAT AGOP 2023 2023. Lecture Notes in Computer Science, vol 14069. Springer, Cham. https://doi.org/10.1007/978-3-031-39965-7_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39965-7_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39964-0

  • Online ISBN: 978-3-031-39965-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics