Abstract
A serious obstacle for the use of fuzzy concept analysis in practical issues is the problem of matching between sets of objects and properties in fuzzy environment. To overcome this problem several modified versions of fuzzy concept analysis were developed. In this paper we combine Bĕlohlávek’s crisply generated fuzzy concept approach and gradation of fuzzy preconcepts initiated in our previous papers and lay the basics of the theory of graded crisply generated oriented fuzzy preconcepts. We illustrate our ideas by two practical examples related to zoology and astronomy.
The first named author acknowledges partial financial support by the COST association CA17124 (Digital forensics evidence analysis via intelligent systems).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alcalde, C., Burusco, A., Díaz, J.C., Fuentes-González, R., Medina-Moreno, J.: Fuzzy property-oriented concept lattices in morphological image and signal processing. In: Rojas, I., Joya, G., Cabestany, J. (eds.) IWANN 2013. LNCS, vol. 7903, pp. 246–253. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38682-4_28
Bĕlohlávek, R.: Concept lattices and order in fuzzy logic. Ann. Pure Appl. Logic 128, 277–298 (2004)
Bělohlávek, R., Sklenář, V., Zacpal, J.: Crisply generated fuzzy concepts. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 269–284. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32262-7_19
Lai, H.-L., Zhang, D.: Concept lattices of fuzzy context: formal concept analysis vs. rough set theory. Int. J. Approximate Reasoning 50(5), 695–707 (2009)
Düntsch, I., Gediga, G.: Approximation operators in qualitative data analysis. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) Theory and Applications of Relational Structures as Knowledge Instruments. LNCS, vol. 2929, pp. 214–230. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24615-2_10
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)
Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS-ConceptStruct 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44583-8_10
Han, S.-E., Šostak, A.: On the measure of \(M\)-rough approximation of \(L\)-fuzzy sets. Soft. Comput. 22, 3843–3853 (2018)
Goguen, J.A.: \(L\)-fuzzy sets. J. Math. Anal. Appl. 18(1), 145–174 (1967)
Krídlo, O., Krajči, S.: Proto-fuzzy concepts, their retrieval and usage. In: CLA 2008, pp. 83–95. Palacký University, Olomouc (2008)
Medina, J., Ojeda-Aciego, M., Ruiz-Calvin̆o, J.: Formal concept analysis via multi-adjoint concept lattices. Fuzzy Sets Syst. 160(2), 130–144 (2009)
Medina, J.: Relating attribute reduction in formal, object-oriented and property-oriented concept lattices. Comput. Math. Appl. 64(6), 1992–2002 (2012)
Medina, J.: Towards multi-adjoint property-oriented concept lattices. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS (LNAI), vol. 6401, pp. 159–166. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16248-0_26
Medina, J.: Multi-adjoint property-oriented and object-oriented concept lattices. Inf. Sci. 190, 95–106 (2012)
Pankratieva, V.V., Kuznetsov, S.O.: Relations between proto-fuzzy concepts, crisply generated fuzzy concepts, and interval pattern structures. Fund. Inform. 115(4), 50–59 (2010)
Rodabaugh, S.E.: Powerset operator foundations for poslat fuzzy set theories and topologies. In: Höhle, U., Rodabaugh, S.E. (eds.) Mathematics of Fuzzy Sets. FSHS, vol. 3, pp. 91–116. Springer, Boston (1999). https://doi.org/10.1007/978-1-4615-5079-2_3
Rosenthal, K.I.: Quantales and Their Applications. Pitman Research Notes in Mathematics, vol. 234. Longman Scientific and Technical (1990)
Šostak, A., Krastiņš, M., Uļjane I.: Graded concept lattices in fuzzy rough set theory. In: CEUR Workshop Proceedings, CLA 2022, vol. 3308, pp. 19–33 (2022)
Šostak, A., Uļjane, I.: Fuzzy relations: the fundament for fuzzy rough approximation, fuzzy concept analysis and fuzzy mathematical morphology. In: Cornejo, M.E., Harmati, I.Á., Kóczy, L.T., Medina-Moreno, J. (eds.) Computational Intelligence and Mathematics for Tackling Complex Problems 4. SCI, vol. 1040, pp. 25–35. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-07707-4_4
Šostak, A., Uļjane, I., Krastiņš, M.: Gradations of fuzzy preconcept lattices. Axioms 10(1:41) (2021)
Wille, R.: Concept lattices and conceptual knowledge systems. Comput. Math. Appl. 23(6–9), 493–515 (1992)
Yao, Y.: Concept lattices in rough set theory. In: Proceedings of 2004 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS 2004), pp. 796–801 (2004)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3(2), 177–200 (1971)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Šostak, A., Krastiņš, M., Uļjane, I. (2023). Conceptuality Degree of Oriented Crisply Generated Fuzzy Preconcepts. In: Massanet, S., Montes, S., Ruiz-Aguilera, D., González-Hidalgo, M. (eds) Fuzzy Logic and Technology, and Aggregation Operators. EUSFLAT AGOP 2023 2023. Lecture Notes in Computer Science, vol 14069. Springer, Cham. https://doi.org/10.1007/978-3-031-39965-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-39965-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-39964-0
Online ISBN: 978-3-031-39965-7
eBook Packages: Computer ScienceComputer Science (R0)