Skip to main content

Conceptuality Degree of Oriented Crisply Generated Fuzzy Preconcepts

  • Conference paper
  • First Online:
Fuzzy Logic and Technology, and Aggregation Operators (EUSFLAT 2023, AGOP 2023)

Abstract

A serious obstacle for the use of fuzzy concept analysis in practical issues is the problem of matching between sets of objects and properties in fuzzy environment. To overcome this problem several modified versions of fuzzy concept analysis were developed. In this paper we combine Bĕlohlávek’s crisply generated fuzzy concept approach and gradation of fuzzy preconcepts initiated in our previous papers and lay the basics of the theory of graded crisply generated oriented fuzzy preconcepts. We illustrate our ideas by two practical examples related to zoology and astronomy.

The first named author acknowledges partial financial support by the COST association CA17124 (Digital forensics evidence analysis via intelligent systems).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alcalde, C., Burusco, A., Díaz, J.C., Fuentes-González, R., Medina-Moreno, J.: Fuzzy property-oriented concept lattices in morphological image and signal processing. In: Rojas, I., Joya, G., Cabestany, J. (eds.) IWANN 2013. LNCS, vol. 7903, pp. 246–253. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38682-4_28

    Chapter  Google Scholar 

  2. Bĕlohlávek, R.: Concept lattices and order in fuzzy logic. Ann. Pure Appl. Logic 128, 277–298 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bělohlávek, R., Sklenář, V., Zacpal, J.: Crisply generated fuzzy concepts. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 269–284. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32262-7_19

    Chapter  MATH  Google Scholar 

  4. Lai, H.-L., Zhang, D.: Concept lattices of fuzzy context: formal concept analysis vs. rough set theory. Int. J. Approximate Reasoning 50(5), 695–707 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Düntsch, I., Gediga, G.: Approximation operators in qualitative data analysis. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) Theory and Applications of Relational Structures as Knowledge Instruments. LNCS, vol. 2929, pp. 214–230. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24615-2_10

    Chapter  Google Scholar 

  6. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  7. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS-ConceptStruct 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44583-8_10

    Chapter  MATH  Google Scholar 

  8. Han, S.-E., Šostak, A.: On the measure of \(M\)-rough approximation of \(L\)-fuzzy sets. Soft. Comput. 22, 3843–3853 (2018)

    Article  MATH  Google Scholar 

  9. Goguen, J.A.: \(L\)-fuzzy sets. J. Math. Anal. Appl. 18(1), 145–174 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  10. Krídlo, O., Krajči, S.: Proto-fuzzy concepts, their retrieval and usage. In: CLA 2008, pp. 83–95. Palacký University, Olomouc (2008)

    Google Scholar 

  11. Medina, J., Ojeda-Aciego, M., Ruiz-Calvin̆o, J.: Formal concept analysis via multi-adjoint concept lattices. Fuzzy Sets Syst. 160(2), 130–144 (2009)

    Google Scholar 

  12. Medina, J.: Relating attribute reduction in formal, object-oriented and property-oriented concept lattices. Comput. Math. Appl. 64(6), 1992–2002 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Medina, J.: Towards multi-adjoint property-oriented concept lattices. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS (LNAI), vol. 6401, pp. 159–166. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16248-0_26

    Chapter  Google Scholar 

  14. Medina, J.: Multi-adjoint property-oriented and object-oriented concept lattices. Inf. Sci. 190, 95–106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pankratieva, V.V., Kuznetsov, S.O.: Relations between proto-fuzzy concepts, crisply generated fuzzy concepts, and interval pattern structures. Fund. Inform. 115(4), 50–59 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Rodabaugh, S.E.: Powerset operator foundations for poslat fuzzy set theories and topologies. In: Höhle, U., Rodabaugh, S.E. (eds.) Mathematics of Fuzzy Sets. FSHS, vol. 3, pp. 91–116. Springer, Boston (1999). https://doi.org/10.1007/978-1-4615-5079-2_3

    Chapter  MATH  Google Scholar 

  17. Rosenthal, K.I.: Quantales and Their Applications. Pitman Research Notes in Mathematics, vol. 234. Longman Scientific and Technical (1990)

    Google Scholar 

  18. Šostak, A., Krastiņš, M., Uļjane I.: Graded concept lattices in fuzzy rough set theory. In: CEUR Workshop Proceedings, CLA 2022, vol. 3308, pp. 19–33 (2022)

    Google Scholar 

  19. Šostak, A., Uļjane, I.: Fuzzy relations: the fundament for fuzzy rough approximation, fuzzy concept analysis and fuzzy mathematical morphology. In: Cornejo, M.E., Harmati, I.Á., Kóczy, L.T., Medina-Moreno, J. (eds.) Computational Intelligence and Mathematics for Tackling Complex Problems 4. SCI, vol. 1040, pp. 25–35. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-07707-4_4

    Chapter  Google Scholar 

  20. Šostak, A., Uļjane, I., Krastiņš, M.: Gradations of fuzzy preconcept lattices. Axioms 10(1:41) (2021)

    Google Scholar 

  21. Wille, R.: Concept lattices and conceptual knowledge systems. Comput. Math. Appl. 23(6–9), 493–515 (1992)

    Article  MATH  Google Scholar 

  22. Yao, Y.: Concept lattices in rough set theory. In: Proceedings of 2004 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS 2004), pp. 796–801 (2004)

    Google Scholar 

  23. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  24. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3(2), 177–200 (1971)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Šostak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Šostak, A., Krastiņš, M., Uļjane, I. (2023). Conceptuality Degree of Oriented Crisply Generated Fuzzy Preconcepts. In: Massanet, S., Montes, S., Ruiz-Aguilera, D., González-Hidalgo, M. (eds) Fuzzy Logic and Technology, and Aggregation Operators. EUSFLAT AGOP 2023 2023. Lecture Notes in Computer Science, vol 14069. Springer, Cham. https://doi.org/10.1007/978-3-031-39965-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39965-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39964-0

  • Online ISBN: 978-3-031-39965-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics