Abstract
In this paper, we prove the quantum security of the signature scheme HAWK, proposed by Ducas, Postlethwaite, Pulles and van Woerden (ASIACRYPT 2022). More precisely, we reduce its strong unforgeability in the quantum random oracle model (QROM) to the hardness of the one-more SVP problem, which is the computational problem on which also the classical security analysis of HAWK relies. Our security proof deals with the quantum aspects in a rather black-box way, making it accessible also to non-quantum-experts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Otherwise, we let \(\mathcal{A}\) make dummy queries to H and \(\textit{Sign}_ \textbf{B} \) respectively, with the dummy queries to \(\textit{Sign}_ \textbf{B} \) being on messages different from \(m^*\), so that they do not affect the freshness of a forgery.
- 2.
If i is not the largest, it can be \((m^*,r^*)=(m_i,r_i)\) yet \(h^*\ne h_i\) because \(h^*\) is computed via the possibly reprogramed H.
References
Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_15
Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3
Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transformation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_13
Ducas, L., et al.: CRYSTALS-dilithium: a lattice-based digital signature scheme. IACR Trans. Cryptographic Hardw. Embed. Syst. 2018, 238–268 (2018)
Ducas, L., Postlethwaite, E.W., Pulles, L.N., van Woerden, W.: Hawk: Module LIP makes lattice signatures fast, compact and simple. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol. 13794, pp. 65–94. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22972-5_3
Ducas, L., van Woerden, W.: On the lattice isomorphism problem, quadratic forms, remarkable lattices, and cryptography. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13277, pp. 643–673. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_23
Fouque, P.A., et al.: Falcon: fast-Fourier lattice-based compact signatures over NTRU. Submission NIST’s Post-quantum Cryptography Stand. Process 36(5), 1–75 (2018)
Grilo, A.B., Hövelmanns, K., Hülsing, A., Majenz, C.: Tight adaptive reprogramming in the QROM. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13090, pp. 637–667. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3_22
Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 326–355. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_12
Zhandry, M.: Secure identity-based encryption in the quantum random oracle model. Int. J. Quantum Inf. 13(04), 1550014 (2015)
Acknowledgement
The authors thank Jelle Don and Eamonn W. Postlethwaite, Ludo N. Pulles for their useful discussions. Yu-Hsuan Huang is supported by the Dutch Research Agenda (NWA) project HAPKIDO (Project No. NWA.1215.18.002), which is financed by the Dutch Research Council (NWO).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
More Proofs
More Proofs
Proof of Lemma 2. Without loss of generality, assume \(\mathcal{A}\) makes exactly \(q_R\) queries to the reprogramming oracle \(\textsf{Repro}_b\) by doing additional dummy queries if otherwise. Define a sequence of hybrid games \(\mathcal{G}_i\) that replaces the first i reprogramming queries of \(\mathcal{A}^{\textsf{Repro}_1,H}\) to querying \(\textsf{Repro}_0\), where by definition \(\mathcal{G}_0\) and \(\mathcal{G}_{q_R}\) run as \(\mathcal{A}^{\textsf{Repro}_1,H}\) and \(\mathcal{A}^{\textsf{Repro}_0,H}\) respectively.
It suffices to show the closeness \(\mathcal{G}_i\approx \mathcal{G}_{i+1}\) for every \(0\le i<q_R\), where we refer to the only query that differs as the crucial query. For the sake of analysis, we consider the random oracle H to be (perfectly) simulated via compressed oracle in a designated database register \( \textsf{D} \), which, within the crucial query before \(y:=H(x)\) or \(H(x):=y\leftarrow \mathcal{Y} \), is decompressed and measured in the computational basis to obtain the oracle H to be used later.
Define \(\mathcal{G}',\mathcal{G}''\) to respectively run as \(\mathcal{G}_i,\mathcal{G}_{i+1}\) except additionally doing a binary measurement \(\{M_0,M_1\}\) where \(M_1:=\sum _{D(x)=\bot }\left| {D}\right\rangle \left\langle {D}\right| _ \textsf{D} \) right after \(x\leftarrow \mathcal{D}\) being sampled but before \(y:=H(x)\) or \(H(x):=y\leftarrow \mathcal{Y} \), and abort if the outcome does not match \(M_1\). \(\mathcal{G}'\) and \(\mathcal{G}''\) behaves identically because on non-abort, the database register \( \textsf{D} \) collapses into \(\left| {\bot }\right\rangle _{ \textsf{D} (x)}\), for which the reprogramming \(H(x):=y\leftarrow \mathcal{Y} \) do not affect the decompressed-and-measured distribution of \( \textsf{D} (x)\). The closeness of \(\mathcal{G}'\approx \mathcal{G}_i\) and \(\mathcal{G}''\approx \mathcal{G}_{i+1}\) follows from the gentle-measurement lemma, together with the fact that there has been at most \(q_H+q_R\) queries of interaction with H prior to the crucial query, so \(\Pr \left[ \mathcal{G}'\text { aborts}\right] =\Pr \left[ \mathcal{G}''\text { aborts}\right] \le (q_H+q_R)\epsilon \). This concludes the proof, which can be summarized by the following chain of closeness
\(\square \)
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fehr, S., Huang, YH. (2023). On the Quantum Security of HAWK. In: Johansson, T., Smith-Tone, D. (eds) Post-Quantum Cryptography. PQCrypto 2023. Lecture Notes in Computer Science, vol 14154. Springer, Cham. https://doi.org/10.1007/978-3-031-40003-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-40003-2_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40002-5
Online ISBN: 978-3-031-40003-2
eBook Packages: Computer ScienceComputer Science (R0)