Abstract
End-to-end authenticity in public networks plays a significant role. Namely, without authenticity, the adversary might be able to retrieve even confidential information straight away by impersonating others. Proposed solutions to establish an authenticated channel cover pre-shared key-based, password-based, and certificate-based techniques. To add confidentiality to an authenticated channel, authenticated key exchange (AKE) protocols usually have one of the three solutions built in. As an amplification, hybrid AKE (HAKE) approaches are getting more popular nowadays and were presented in several flavors to incorporate classical, post-quantum, or quantum-key-distribution components. The main benefit is redundancy, i.e., if some of the components fail, the primitive still yields a confidential and authenticated channel. However, current HAKE instantiations either rely on pre-shared keys (which yields inefficient end-to-end authenticity) or only support one or two of the three above components (resulting in reduced redundancy and flexibility).
In this work, we present an extension of a modular HAKE framework due to Dowling, Brandt Hansen, and Paterson (PQCrypto’20) that does not suffer from the above constraints. While their instantiation, dubbed Muckle, requires pre-shared keys (and hence yields inefficient end-to-end authenticity), our extended instantiation called \(\text {Muckle}+\) utilizes post-quantum digital signatures. While replacing pre-shared keys with digital signatures is rather straightforward in general, this turned out to be surprisingly non-trivial when applied to HAKE frameworks (resulting in adapted proof techniques).
S. Bruckner—The work was conducted while the author was at AIT Austrian Institute of Technology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
Interestingly, while some approaches even backed by patents (https://www.ipo.gov.uk/p-ipsum/Case/PublicationNumber/GB2590064) claim to provide long-range QKD networks without trusted nodes (i.e., establishing a secure channel between any two nodes), a recent work [46] demonstrates that such claim cannot be met.
- 5.
We are sticking to the term “hybrid” here as it was coined in prior work on AKEs [36] in the meaning of combining classical (or, non-quantum-safe), QKD, and post-quantum cryptographic primitives. Other works may use the term “quantum-safe” to combine QKD and PQC primitives, or different terms.
- 6.
Due to Qualys SSL Labs, https://www.ssllabs.com/ssl-pulse/, accessed in June 2023.
- 7.
- 8.
- 9.
We observed no significant differences for the initiator and responder.
- 10.
See https://github.com/open-quantum-safe/liboqs/issues/1476 for some background on this issue.
References
Aas, J., et al.: Let’s encrypt: an automated certificate authority to encrypt the entire web. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2473–2487. ACM Press (2019). https://doi.org/10.1145/3319535.3363192
Alléaume, R., et al.: Using quantum key distribution for cryptographic purposes: a survey. Theor. Comput. Sci. 560, 62–81 (2014). https://doi.org/10.1016/j.tcs.2014.09.018
Baum, C., de Saint Guilhem, C.D., Kales, D., Orsini, E., Scholl, P., Zaverucha, G.: Banquet: short and fast signatures from AES. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 266–297. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_11
Bellare, M., Lysyanskaya, A.: Symmetric and dual PRFs from standard assumptions: a generic validation of an HMAC assumption. Cryptology ePrint Archive, Report 2015/1198 (2015). https://eprint.iacr.org/2015/1198
Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_28
Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_11
Bellare, M., Rogaway, P.: Provably secure session key distribution: the three party case. In: 27th ACM STOC, pp. 57–66. ACM Press (1995). https://doi.org/10.1145/225058.225084
Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_14
Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 124–142. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_9
Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe, P.: The SPHINCS\(^+\) signature framework. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2129–2146. ACM Press (2019). https://doi.org/10.1145/3319535.3363229
Beullens, W.: Breaking rainbow takes a weekend on a laptop. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 464–479. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15979-4_16
Bindel, N., Brendel, J., Fischlin, M., Goncalves, B., Stebila, D.: Hybrid key encapsulation mechanisms and authenticated key exchange. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 206–226. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_12
Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Symposium on Security and Privacy, pp. 553–570. IEEE Computer Society Press (2015). https://doi.org/10.1109/SP.2015.40
Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable encryption from constrained cryptographic primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1465–1482. ACM Press (2017). https://doi.org/10.1145/3133956.3133980
Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_12
Brendel, J., Fischlin, M., Günther, F.: Breakdown resilience of key exchange protocols: newhope, TLS 1.3, and hybrids. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 521–541. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29962-0_25
Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure signature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_8
Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_16
Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14008, pp. 423–447. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30589-4_15
Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1825–1842. ACM Press (2017). https://doi.org/10.1145/3133956.3133997
Chen, L., Chen, J., Chen, Q., Zhao, Y.: A quantum key distribution routing scheme for hybrid-trusted QKD network system. Quantum Inf. Process. 22(1), 75 (2023). https://doi.org/10.1007/s11128-022-03825-x
Cini, V., Ramacher, S., Slamanig, D., Striecks, C.: CCA-secure (puncturable) KEMs from encryption with non-negligible decryption errors. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 159–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_6
Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.T.: Internet X.509 public key infrastructure certificate and certificate revocation list (CRL) profile. RFC 5280, 1–151 (2008). https://doi.org/10.17487/RFC5280
Costea, S., Choudary, M.O., Gucea, D., Tackmann, B., Raiciu, C.: Secure opportunistic multipath key exchange. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 2077–2094. ACM Press (2018). https://doi.org/10.1145/3243734.3243791
Cremers, C., Feltz, M.: Beyond eCK: perfect forward secrecy under actor compromise and ephemeral-key reveal. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 734–751. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33167-1_42
Dallmeier, F., et al.: Forward-secure 0-RTT goes live: implementation and performance analysis in QUIC. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 2020. LNCS, vol. 12579, pp. 211–231. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65411-5_11
Dauterman, E., Corrigan-Gibbs, H., Mazières, D.: SafetyPin: encrypted backups with human-memorable secrets. In: 14th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2020, Virtual Event, 4–6 November 2020, pp. 1121–1138. USENIX Association (2020)
Derler, D., Gellert, K., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and applications to efficient forward-secret 0-RTT key exchange. J. Cryptol. 34(2), 13 (2021)
Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and applications to efficient forward-secret 0-RTT key exchange. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 425–455. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_14
Derler, D., Krenn, S., Lorünser, T., Ramacher, S., Slamanig, D., Striecks, C.: Revisiting proxy re-encryption: forward secrecy, improved security, and applications. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 219–250. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_8
Derler, D., Ramacher, S., Slamanig, D., Striecks, C.: Fine-grained forward secrecy: allow-list/deny-list encryption and applications. In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12675, pp. 499–519. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-64331-0_26
Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638
Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated key exchanges. Des. Codes Cryptogr. 2(2), 107–125 (1992)
Donenfeld, J.A.: WireGuard: next generation kernel network tunnel. In: NDSS 2017. The Internet Society (2017)
Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the TLS 1.3 handshake protocol. J. Cryptol. 34(4), 37 (2021). https://doi.org/10.1007/s00145-021-09384-1
Dowling, B., Hansen, T.B., Paterson, K.G.: Many a mickle makes a muckle: a framework for provably quantum-secure hybrid key exchange. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 483–502. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_26
Drijvers, M., Gorbunov, S., Neven, G., Wee, H.: Pixel: multi-signatures for consensus. In: Capkun, S., Roesner, F. (eds.) USENIX Security 2020, pp. 2093–2110. USENIX Association (2020)
ETSI: Quantum key distribution (QKD): Protocol and data format of rest-based key delivery API (2019). https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_qkd014v010101p.pdf
Fitzi, M., Franklin, M., Garay, J., Vardhan, S.H.: Towards optimal and efficient perfectly secure message transmission. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 311–322. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_17
Groth, J.: Non-interactive distributed key generation and key resharing. Cryptology ePrint Archive, Report 2021/339 (2021). https://eprint.iacr.org/2021/339
Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_5
Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full forward secrecy. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 519–548. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_18
Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key exchange in the quantum random oracle model. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 389–422. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_14
Hülsing, A., Butin, D., Gazdag, S., Rijneveld, J., Mohaisen, A.: XMSS: extended Merkle signature scheme. RFC 8391, 1–74 (2018). https://doi.org/10.17487/RFC8391
Hülsing, A., Ning, K.C., Schwabe, P., Weber, F., Zimmermann, P.R.: Post-quantum WireGuard. In: 2021 IEEE Symposium on Security and Privacy, pp. 304–321. IEEE Computer Society Press (2021). https://doi.org/10.1109/SP40001.2021.00030
Huttner, B., et al.: Long-range QKD without trusted nodes is not possible with current technology. npj Quantum Inf. 8(1), 1–5 (2022)
Iyengar, J., Thomson, M.: QUIC: a UDP-based multiplexed and secure transport. RFC 9000, 1–151 (2021). https://doi.org/10.17487/RFC9000
Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 525–537. ACM Press (2018). https://doi.org/10.1145/3243734.3243805
Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press (2014). https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
Kaufman, C.: Internet key exchange (IKEv2) protocol. RFC 4306, 1–99 (2005). https://doi.org/10.17487/RFC4306
Krawczyk, H.: SIGMA: the “SIGn-and-MAc’’ approach to authenticated Diffie-Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_24
Kumar, M.V.N.A., Goundan, P.R., Srinathan, K., Rangan, C.P.: On perfectly secure communication over arbitrary networks. In: Ricciardi, A. (ed.) 21st ACM PODC, pp. 193–202. ACM (2002). https://doi.org/10.1145/571825.571858
Kwiatkowski, K., Sullivan, N., Langley, A., Levin, D., Mislove, A.: Measuring TLS key exchange with post-quantum KEM. In: Workshop Record of the Second PQC Standardization Conference (2019). https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kwiatkowski-measuring-tls.pdf
Langley, A.: Cecpq1 results. Blog post (2016). https://www.imperialviolet.org/2016/11/28/cecpq1.html
Langley, A., et al.: The QUIC transport protocol: design and internet-scale deployment. In: Proceedings of the Conference of the ACM Special Interest Group on Data Communication, SIGCOMM 2017, Los Angeles, CA, USA, 21–25 August 2017, pp. 183–196. ACM (2017). https://doi.org/10.1145/3098822.3098842
Lauer, S., Gellert, K., Merget, R., Handirk, T., Schwenk, J.: T0RTT: non-interactive immediate forward-secret single-pass circuit construction. PoPETs 2020(2), 336–357 (2020). https://doi.org/10.2478/popets-2020-0030
Li, J., Kim, K., Zhang, F., Chen, X.: Aggregate proxy signature and verifiably encrypted proxy signature. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 208–217. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-5_15
Maurer, U.M.: Protocols for secret key agreement by public discussion based on common information. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 461–470. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_32
Mehic, M., et al.: Quantum key distribution: a networking perspective. ACM Comput. Surv. 53(5), 96:1–96:41 (2020). https://doi.org/10.1145/3402192
Mosca, M., Stebila, D., Ustaoğlu, B.: Quantum key distribution in the classical authenticated key exchange framework. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 136–154. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9_9
Pacher, C., et al.: Attacks on quantum key distribution protocols that employ non-its authentication. Quantum Inf. Process. 15(1), 327–362 (2016). https://doi.org/10.1007/s11128-015-1160-4
Paquin, C., Stebila, D., Tamvada, G.: Benchmarking post-quantum cryptography in TLS. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 72–91. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_5
Ramacher, S., Slamanig, D., Weninger, A.: Privacy-preserving authenticated key exchange: stronger privacy and generic constructions. In: Bertino, E., Shulman, H., Waidner, M. (eds.) ESORICS 2021. LNCS, vol. 12973, pp. 676–696. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88428-4_33
Rashidi, L., et al.: More than a fair share: network data remanence attacks against secret sharing-based schemes. In: NDSS 2021. The Internet Society (2021)
Rass, S., König, S.: Indirect eavesdropping in quantum networks. In: ICQNM 2011: The Fifth International Conference on Quantum, Nano and Micro Technologies (2011)
Rass, S., Schartner, P.: Multipath authentication without shared secrets and with applications in quantum networks. In: Arabnia, H.R., et al. (eds.) Proceedings of the 2010 International Conference on Security & Management, SAM 2010, Las Vegas Nevada, USA, 12–15 July 2010, vol. 2, pp. 111–115. CSREA Press (2010)
Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC 8446, 1–160 (2018). https://doi.org/10.17487/RFC8446
Rösler, P., Slamanig, D., Striecks, C.: Unique-path identity based encryption with applications to strongly secure messaging. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14008, pp. 3–34. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30589-4_1
Schäge, S., Schwenk, J., Lauer, S.: Privacy-preserving authenticated key exchange and the case of IKEv2. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 567–596. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_20
Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake signatures. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1461–1480. ACM Press (2020). https://doi.org/10.1145/3372297.3423350
Slamanig, D., Striecks, C.: Puncture ’em all: updatable encryption with no-directional key updates and expiring ciphertexts. Cryptology ePrint Archive, Report 2021/268 (2021). https://eprint.iacr.org/2021/268
Stebila, D., Mosca, M.: Post-quantum key exchange for the internet and the open quantum safe project. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 14–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_2
Yu, X., et al.: Multi-path-based quasi-real-time key provisioning in quantum-key-distribution enabled optical networks (QKD-on). Opt. Express 29(14), 21225–21239 (2021). https://doi.org/10.1364/OE.425562
Zhao, Y.: Identity-concealed authenticated encryption and key exchange. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1464–1479. ACM Press (2016). https://doi.org/10.1145/2976749.2978350
Acknowledgements
The authors want to thank Christian Rechberger and Felix Wissel for insightful discussions, and Florian Kutschera for helping with the setup of the QKD devices. This work received funding from the Austrian Research Promotion Agency (FFG) under grant agreement number FO999886370 (“QKD4GOV”), from the European Defence Industrial Development Programme (EDIDP) under grant agreement number SI2858093 (“DISCRETION”), and from the Digital Europe Program under grant agreement number 101091642 (“QCI-CAT”).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bruckner, S., Ramacher, S., Striecks, C. (2023). \(\text {Muckle}+\): End-to-End Hybrid Authenticated Key Exchanges. In: Johansson, T., Smith-Tone, D. (eds) Post-Quantum Cryptography. PQCrypto 2023. Lecture Notes in Computer Science, vol 14154. Springer, Cham. https://doi.org/10.1007/978-3-031-40003-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-40003-2_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40002-5
Online ISBN: 978-3-031-40003-2
eBook Packages: Computer ScienceComputer Science (R0)