Abstract
Educational materials play a vital role in effectively conveying information to learners, with the readability and legibility of written text serving as crucial factors. This study investigates the influence of font selection on educational materials and explores the relationship between handwriting fluency and cognitive load. By identifying challenges in written expression, such as reduced working memory capacity, text organization difficulties, and content recall issues, the study sheds light on the significance of neat handwriting. The research emphasizes the relevance of neat handwriting in critical examinations, including college entrance exams, academic English exams, and job interviews, where the fluency of one’s handwriting can impact the decision-making process of interviewers. This highlights the value of handwriting fluency beyond educational contexts. Advancements in computer science and machine vision present new opportunities for automating font evaluation and selection. By employing machine vision algorithms to objectively analyze visual features of fonts, such as serifs, stroke width, and character spacing, the legibility and readability of fonts used in English language teaching materials are assessed. In this study, machine vision techniques are applied to score fonts used in educational materials. The OpenCV computer vision library is utilized to extract visual features of fonts from images, enabling the analysis of their legibility and readability. The primary objective is to provide educators with an automated and objective tool for scoring handwriting, reducing visual fatigue, and ensuring impartial evaluations. This research contributes to enhancing the quality of educational materials and provides valuable insights for educators, researchers, and font designers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Seufert, T., Wagner, F., Westphal, J.: The effects of different levels of disfluency on learning outcomes and cognitive load. Instr. Sci. 45(2), 221–238 (2016). https://doi.org/10.1007/s11251-016-9387-8
Bouriga, S., Olive, T.: Is typewriting more resources-demanding than handwriting in undergraduate students? Read. Writ. 34(9), 2227–2255 (2021)
Nunes, A., Cordeiro, C., Limpo, T., Castro, S.L.: Effectiveness of automated writing evaluation systems in school settings: a systematic review of studies from 2000 to 2020. J. Comput. Assist. Learn. 38(2), 599–620 (2021)
Limpo, T., Graham, S.: The role of handwriting instruction in writers’ education. Br. J. Educ. Stud. 68(3), 311–329 (2019)
Huang, H., Curle, S.: Higher education medium of instruction and career prospects: an exploration of current and graduated Chinese students’ perceptions. J. Educ. Work. 34(3), 331–343 (2021)
Mundell, J.: Characteristics of Notes Taken during the Employment Interview and Their Impact on Organizational Outcomes. University of Missouri-Saint Louis, St. Louis (2020)
Hsieh, C.N.: The Case of Taiwan: Perceptions of College Students about the Use of the Toeic ® Tests as a Condition of Graduation. Technical report, ETS Research Report Series (2017)
Canz, T., Hoffmann, L., Kania, R.: Presentation-mode effects in large-scale writing assessments. Assess. Writ. 45, 100470 (2020)
Mei, Y., Cheng, L.: Scoring fairness in large-scale high-stakes English language testing: an examination of the national matriculation English test. In: Coniam, D. (ed.) English Language Education and Assessment, pp. 171–187. Springer, Singapore (2014). https://doi.org/10.1007/978-981-287-071-1_11
Reber, R., Greifeneder, R.: Processing fluency in education: how metacognitive feelings shape learning, belief formation, and affect. Educ. Psychol. 52(2), 84–103 (2016)
Long, S., He, X., Yao, C.: Scene text detection and recognition: the deep learning era. Int. J. Comput. Vis. 129(1), 161–184 (2020)
Zhang, S., Zhou, C., Li, Y., Zhang, X., Ye, L., Wei, Y.: Irregular scene text detection based on a graph convolutional network. Sensors 23(3), 1070 (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Syu, CW., Chang, SY., Chang, CC. (2023). Comparing Handwriting Fluency in English Language Teaching Using Computer Vision Techniques. In: Huang, YM., Rocha, T. (eds) Innovative Technologies and Learning. ICITL 2023. Lecture Notes in Computer Science, vol 14099. Springer, Cham. https://doi.org/10.1007/978-3-031-40113-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-40113-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40112-1
Online ISBN: 978-3-031-40113-8
eBook Packages: Computer ScienceComputer Science (R0)