Skip to main content

Towards Addressing Problem-Distribution Drift with Case Discovery

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14141))

Included in the following conference series:

  • 393 Accesses

Abstract

Case-based reasoning (CBR) is a problem-solving and learning methodology that applies records of past experiences, captured as cases, to solve new problems. The performance of CBR depends on retrieving cases relevant to each new problem that the reasoner encounters. In real-world applications, the distribution of problems can change over time, which can cause an issue for the competence and efficiency of CBR systems. This paper proposes addressing this issue through predictive case discovery, which involves predicting cases expected to be useful for future problems to acquire them in advance. It presents an overview of case discovery for problem-distribution drift, including the challenges involved, proposed strategies, and future research directions. It illustrates with a case study evaluating a clustering-based case discovery strategy in a path planning domain across four scenarios: no drift, non-cyclical drift, cyclical drift, and drift from obsolescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/schackbrian2012/ICCBR-2023.

References

  1. Alippi, C., Roveri, M.: Just-in-time adaptive classifiers-part I: detecting nonstationary changes. IEEE Trans. Neural Netw. 19(7), 1145–1153 (2008)

    Article  Google Scholar 

  2. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 443–448. SIAM (2007)

    Google Scholar 

  3. Cunningham, P., Nowlan, N., Delany, S., Haahr, M.: A case-based approach to spam filtering that can track concept drift. Technicaal report TCD-CS-2003-16, Computer Science Department, Trinity College Dublin (2003)

    Google Scholar 

  4. Dasu, T., Krishnan, S., Venkatasubramanian, S., Yi, K.: An information-theoretic approach to detecting changes in multi-dimensional data streams. In: Proceedings of Symposium on the Interface of Statistics, Computing Science, and Applications (Interface) (2006)

    Google Scholar 

  5. Delany, S.J., Cunningham, P., Tsymbal, A., Coyle, L.: A case-based technique for tracking concept drift in spam filtering. In: Macintosh, A., Ellis, R., Allen, T. (eds.) SGAI 2004, pp. 3–16. Springer, London (2005). https://doi.org/10.1007/1-84628-103-2_1

    Chapter  Google Scholar 

  6. Fernández, A., Garcia, S., Herrera, F., Chawla, N.V.: Smote for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. J. Artif. Intell. Res. 61, 863–905 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hodál, J., Dvorák, J.: Using case-based reasoning for mobile robot path planning. Eng. Mech. 15(3), 181–191 (2008)

    Google Scholar 

  8. Hoens, T.R., Polikar, R., Chawla, N.V.: Learning from streaming data with concept drift and imbalance: an overview. Progr. Artif. Intell. 1(1), 89–101 (2012)

    Article  Google Scholar 

  9. Iwana, B.K., Uchida, S.: An empirical survey of data augmentation for time series classification with neural networks. PLoS ONE 16(7), e0254841 (2021)

    Google Scholar 

  10. Kantchelian, A., et al.: Approaches to adversarial drift. In: Proceedings of the 2013 ACM Workshop on Artificial Intelligence and Security, pp. 99–110 (2013)

    Google Scholar 

  11. Köppen, M.: The curse of dimensionality. In: 5th Online World Conference on Soft Computing in Industrial Applications (WSC5), vol. 1, pp. 4–8 (2000)

    Google Scholar 

  12. Leake, D., Kinley, A., Wilson, D.: Learning to integrate multiple knowledge sources for case-based reasoning. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pp. 246–251. Morgan Kaufmann (1997)

    Google Scholar 

  13. Leake, D., Schack, B.: Exploration vs. exploitation in case-base maintenance: leveraging competence-based deletion with ghost cases. In: Cox, M.T., Funk, P., Begum, S. (eds.) ICCBR 2018. LNCS (LNAI), vol. 11156, pp. 202–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01081-2_14

    Chapter  Google Scholar 

  14. Leake, D.B., Wilson, D.C.: When experience is wrong: examining CBR for changing tasks and environments. In: Althoff, K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS, vol. 1650, pp. 218–232. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48508-2_16

    Chapter  Google Scholar 

  15. Leake, D., Ye, X.: Harmonizing case retrieval and adaptation with alternating optimization. In: Sánchez-Ruiz, A.A., Floyd, M.W. (eds.) ICCBR 2021. LNCS (LNAI), vol. 12877, pp. 125–139. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86957-1_9

    Chapter  Google Scholar 

  16. López de Mántaras, R., et al.: Retrieval, reuse, revision, and retention in CBR. Knowl. Eng. Rev. 20(3) (2005)

    Google Scholar 

  17. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346–2363 (2019)

    Google Scholar 

  18. Lu, N., Zhang, G., Lu, J.: Concept drift detection via competence models. Artif. Intell. 209, 11–28 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Massie, S., Craw, S., Wiratunga, N.: Complexity-guided case discovery for case based reasoning. In: AAAI 2005: Proceedings of the 20th National Conference on Artificial Intelligence, pp. 216–221. AAAI Press (2005)

    Google Scholar 

  20. McKenna, E., Smyth, B.: Competence-guided case discovery. In: Bramer, M., Coenen, F., Preece, A. (eds.) Research and Development in Intelligent Systems XVIII, pp. 97–108. Springer, London (2002). https://doi.org/10.1007/978-1-4471-0119-2_8

    Chapter  Google Scholar 

  21. McSherry, D.: Automating case selection in the construction of a case library. In: Bramer, M., Macintosh, A., Coenen, F. (eds.) Research and Development in Intelligent Systems XVI, pp. 163–177. Springer, London (2000). https://doi.org/10.1007/978-1-4471-0745-3_11

    Chapter  Google Scholar 

  22. McSherry, D.: Intelligent case-authoring support in casemaker-2. Comput. Intell. 17(2), 331–345 (2001)

    Article  Google Scholar 

  23. Mehdi Owrang, O.M.: Case discovery in case-based reasoning systems. Inf. Syst. Manage. 15(1), 74–78 (1998)

    Article  Google Scholar 

  24. Smyth, B., Keane, M.: Adaptation-guided retrieval: questioning the similarity assumption in reasoning. Artif. Intell. 102(2), 249–293 (1998)

    Article  MATH  Google Scholar 

  25. Smyth, B., McKenna, E.: Competence models and the maintenance problem. Comput. Intell. 17, 235–249 (2001)

    Article  Google Scholar 

  26. Smyth, B.: Case-base maintenance. In: Pasqual del Pobil, A., Mira, J., Ali, M. (eds.) IEA/AIE 1998. LNCS, vol. 1416, pp. 507–516. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-64574-8_436

    Chapter  Google Scholar 

  27. Smyth, B., Cunningham, P.: The utility problem analysed: a case-based reasoning perspective. In: Smith, I., Faltings, B. (eds.) EWCBR 1996. LNCS, vol. 1168, pp. 392–399. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0020625

    Chapter  Google Scholar 

  28. Smyth, B., Keane, M.T.: Remembering to forget. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, pp. 377–382. Citeseer (1995)

    Google Scholar 

  29. Smyth, B., McKenna, E.: Competence models and the maintenance problem. Comput. Intell. 17(2), 235–249 (2001)

    Article  Google Scholar 

  30. Vasudevan, C., Ganesan, K.: Case-based path planning for autonomous underwater vehicles. Auton. Robot. 3(2–3), 79–89 (1996)

    Article  Google Scholar 

  31. Veloso, M.: Planning and Learning by Analogical Reasoning. Springer, Berlin (1994). https://doi.org/10.1007/3-540-58811-6

    Book  MATH  Google Scholar 

  32. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the Department of the Navy, Office of Naval Research (Award N00014-19-1-2655).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Leake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leake, D., Schack, B. (2023). Towards Addressing Problem-Distribution Drift with Case Discovery. In: Massie, S., Chakraborti, S. (eds) Case-Based Reasoning Research and Development. ICCBR 2023. Lecture Notes in Computer Science(), vol 14141. Springer, Cham. https://doi.org/10.1007/978-3-031-40177-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40177-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40176-3

  • Online ISBN: 978-3-031-40177-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics