Skip to main content

An Overview and Comparison of Case-Based Reasoning Frameworks

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2023)

Abstract

Case-Based Reasoning (CBR) is a methodology with many applications in industrial and scientific domains. Over the past decades, various frameworks have been developed to facilitate the development of CBR applications. For practitioners and researchers, it is challenging to overview the landscape of existing frameworks with their specific scope and features. This makes it difficult to choose the most suitable framework for specific requirements. To address this issue, this work provides an overview and comparison of CBR frameworks, focusing on five recent, open-source CBR frameworks: CloodCBR, eXiT*CBR, jColibri, myCBR, and ProCAKE. They are compared by supported CBR types, knowledge containers, CBR phases, interfaces, and special features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.aiai.ed.ac.uk/project/cbr/CBRDistrib/.

  2. 2.

    https://www.aber.ac.uk/~dcswww/Research/mbsg/cbrprojects/getting_caspian.shtml.

  3. 3.

    http://freecbr.sourceforge.net/.

  4. 4.

    http://www-sop.inria.fr/aid/software.html.

  5. 5.

    https://homes.luddy.indiana.edu/leake/iucbrf/.

  6. 6.

    A complete overview table is available at: https://git.opendfki.de/easy/overview-and-comparison-of-cbr-frameworks/-/blob/main/Overview-Table.pdf.

References

  1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7(1), 39–59 (1994)

    Article  Google Scholar 

  2. Abásolo, C., Plaza, E., Arcos, J.-L.: Components for case-based reasoning systems. In: Escrig, M.T., Toledo, F., Golobardes, E. (eds.) CCIA 2002. LNCS (LNAI), vol. 2504, pp. 1–16. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36079-4_1

    Chapter  Google Scholar 

  3. Atanassov, A., Antonov, L.: Comparative analysis of case based reasoning software frameworks jColibri and myCBR. J. Chem. Technol. Metall. 47(1), 83–90 (2012)

    Google Scholar 

  4. Bach, K., Althoff, K.-D.: Developing case-based reasoning applications using myCBR 3. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS (LNAI), vol. 7466, pp. 17–31. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32986-9_4

    Chapter  Google Scholar 

  5. Bach, K., Mathisen, B.M., Jaiswal, A.: Demonstrating the myCBR rest API. In: 27th ICCBR Workshop Proceedings. CEUR Workshop Proceedings, vol. 2567, pp. 144–155. CEUR-WS.org (2019)

    Google Scholar 

  6. Bach, K., Sauer, C.S., Althoff, K., Roth-Berghofer, T.: Knowledge modeling with the open source tool myCBR. In: 21st ECAI Workshop Proceedings. CEUR Workshop Proceedings, vol. 1289. CEUR-WS.org (2014)

    Google Scholar 

  7. Begum, S., Ahmed, M.U., Funk, P., Xiong, N., Folke, M.: Case-based reasoning systems in the health sciences: a survey of recent trends and developments. IEEE Trans. Syst. Man Cybern. Part C 41(4), 421–434 (2011)

    Article  Google Scholar 

  8. Bello-Tomás, J.J., González-Calero, P.A., Díaz-Agudo, B.: JColibri: an object-oriented framework for building CBR systems. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 32–46. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28631-8_4

    Chapter  Google Scholar 

  9. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic workflows. Inf. Syst. 40, 115–127 (2014)

    Article  Google Scholar 

  10. Bergmann, R., Grumbach, L., Malburg, L., Zeyen, C.: ProCAKE: a process-oriented case-based reasoning framework. In: 27th ICCBR Workshop Proceedings (2019)

    Google Scholar 

  11. Bogaerts, S., Leake, D.: Technical report 617 IUCBRF: a framework for rapid and modular case-based reasoning system development report version 1.0. IU Bloomington (2005)

    Google Scholar 

  12. Bogaerts, S., Leake, D.B.: Increasing AI project effectiveness with reusable code frameworks: a case study using IUCBRF. In: 18th FLAIRS. FloridaOJ, pp. 2–7. AAAI Press (2005)

    Google Scholar 

  13. Bruland, T., Aamodt, A., Langseth, H.: Architectures integrating case-based reasoning and Bayesian networks for clinical decision support. In: Shi, Z., Vadera, S., Aamodt, A., Leake, D. (eds.) IIP 2010. IAICT, vol. 340, pp. 82–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16327-2_13

    Chapter  Google Scholar 

  14. Díaz-Agudo, B., González-Calero, P.A., Recio-García, J.A., Sánchez-Ruiz-Granados, A.A.: Building CBR systems with jColibri. SCP 69(1–3), 68–75 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Eisenstadt, V., Langenhan, C., Althoff, K.D.: Generation of floor plan variations with convolutional neural networks and case-based reasoning - an approach for unsupervised adaptation of room configurations within a framework for support of early conceptual design. In: eCAADe SIGraDi Conference, Porto (2019)

    Google Scholar 

  16. ElKafrawy, P., Mohamed, R.A.: Comparative study of case-based reasoning software. IJSRM 1(6), 224–233 (2015)

    Google Scholar 

  17. Grumbach, L., Bergmann, R.: Towards case-based deviation management for flexible workflows. In: Jäschke, R., Weidlich, M. (eds.) LWDA 2019. CEUR Workshop Proceedings, vol. 2454, pp. 241–252. CEUR-WS.org (2019)

    Google Scholar 

  18. He, W., Wang, F.: Integrating a case-based reasoning shell and web 2.0: design recommendations and insights. World Wide Web 19(6), 1231–1249 (2016). https://doi.org/10.1007/s11280-015-0380-y

    Article  MathSciNet  Google Scholar 

  19. Heilala, J., et al.: Ambient intelligence based monitoring and energy efficiency optimization system. In: ISAM 2011, pp. 1–6. IEEE (2011)

    Google Scholar 

  20. Hinkle, D., Toomey, C.: Applying case-based reasoning to manufacturing. AI Mag. 16(1), 65–65 (1995)

    Google Scholar 

  21. Hoffmann, M., Bergmann, R.: Using graph embedding techniques in process-oriented case-based reasoning. Algorithms 15(2), 27 (2022)

    Article  Google Scholar 

  22. Hundt, A., Reuss, P., Sauer, C.S., Roth-Berghofer, T.: Knowledge modelling and maintenance in myCBR3. In: 16th LWA Workshop Proceedings. CEUR Workshop Proceedings, vol. 1226, pp. 264–275. CEUR-WS.org (2014)

    Google Scholar 

  23. Husni, H.S., Ramadhan, A., Abdurachman, E., Trisetyarso, A.: Indonesia digital government auditing model using rule based and cloud case-based reasoning. Int. J. Sci. Technol. Res. 1(2), 60–63 (2022)

    Google Scholar 

  24. Jaczynski, M.: A framework for the management of past experiences with time-extended situations. In: 6th CIKM Proceedings, pp. 32–39. ACM (1997)

    Google Scholar 

  25. Jaczynski, M., Trousse, B.: An object-oriented framework for the design and the implementation of case-based reasoners. In: CBR Workshop Proceedings (1998)

    Google Scholar 

  26. Kolodner, J.L.: Reconstructive memory: a computer model. Cogn. Sci. 7(4), 281–328 (1983)

    Article  Google Scholar 

  27. Kumar, R., Schultheis, A., Malburg, L., Hoffmann, M., Bergmann, R.: Considering inter-case dependencies during similarity-based retrieval in process-oriented case-based reasoning. In: 35th FLAIRS. FloridaOJ (2022)

    Google Scholar 

  28. Lebowitz, M.: Memory-based parsing. AI 21(4), 363–404 (1983)

    Google Scholar 

  29. López, B., et al.: Intelligent system for premature babies healthcare at home based on case-based reasoning. In: 2nd IWBBIO, pp. 1278–1289. Copicentro Editorial (2014)

    Google Scholar 

  30. López, B., Pous, C.: eXiT*CBR: a tool supporting RRI. In: 21st CCIA. Frontiers in Artificial Intelligence and Applications, vol. 308, pp. 176–179. IOS Press (2018)

    Google Scholar 

  31. López, B., Pous, C., Gay, P., Pla, A., Sanz, J., Brunet, J.: eXiT*CBR: a framework for case-based medical diagnosis development and experimentation. Artif. Intell. Med. 51(2), 81–91 (2011)

    Article  Google Scholar 

  32. López, B., et al.: APPRAISE-RS: automated, updated, participatory, and personalized treatment recommender systems based on grade methodology. Heliyon 9(2), e13074 (2023)

    Article  Google Scholar 

  33. López, B., Pous, C., Plá, A., Gay, P., Brunet, J.: Breast cancer prognosis through CBR. In: 27th ICCBR Workshop Proceedings, pp. 105–110 (2012)

    Google Scholar 

  34. Malburg, L., Brand, F., Bergmann, R.: Adaptive management of cyber-physical workflows by means of case-based reasoning and automated planning. In: Sales, T.P., Proper, H.A., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds.) EDOC 2022. LNBIP, vol. 466, pp. 79–95. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-26886-1_5

    Chapter  Google Scholar 

  35. Mark, W.S.: Case-based reasoning for autoclave management. In: CBR Workshop Proceedings, pp. 176–180. DARPA - Information Science (1989)

    Google Scholar 

  36. Martín, A., León, C.: Expert knowledge management based on ontology in a digital library. In: 12th ICEIS Proceedings, pp. 291–298. SciTePress (2010)

    Google Scholar 

  37. Müller, G., Bergmann, R.: A cluster-based approach to improve similarity-based retrieval for process-oriented case-based reasoning. In: 21st ECAI, vol. 263, pp. 639–644. IOS Press (2014)

    Google Scholar 

  38. Nguyen, T., Czerwinski, M., Lee, D.: Compaq QuickSource: providing the consumer with the power of artificial intelligence. In: IAAIC Proceedings, pp. 142–151 (1993)

    Google Scholar 

  39. Nkisi-Orji, I., Palihawadana, C., Wiratunga, N., Corsar, D., Wijekoon, A.: Adapting semantic similarity methods for case-based reasoning in the cloud. In: Keane, M.T., Wiratunga, N. (eds.) ICCBR 2022. LNAI, vol. 13405, pp. 125–139. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14923-8_9

    Chapter  Google Scholar 

  40. Nkisi-Orji, I., Wiratunga, N., Palihawadana, C., Recio-García, J.A., Corsar, D.: Clood CBR: towards microservices oriented case-based reasoning. In: Watson, I., Weber, R. (eds.) ICCBR 2020. LNCS (LNAI), vol. 12311, pp. 129–143. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58342-2_9

    Chapter  Google Scholar 

  41. Palihawadana, C., Nkisi-Orji, I., Wiratunga, N., Corsar, D., Wijekoon, A.: Introducing Clood CBR: a cloud based CBR framework. In: 30th ICCBR Workshop Proceedings. CEUR Workshop Proceedings, vol. 3389, pp. 233–234. CEUR-WS.org (2022)

    Google Scholar 

  42. Peixoto, T.F., Martinazzo, L.A., Weber, R.O.: Cyberinfrastructure requirements for research communities. In: 7th CIKI, vol. 1 (2017)

    Google Scholar 

  43. Pla, A., López, B., Gay, P., Pous, C.: eXiT*CBRv.2: distributed case-based reasoning tool for medical prognosis. Decis. Support Syst. 54(3), 1499–1510 (2013)

    Article  Google Scholar 

  44. Recio, J.A., Sánchez, A., Díaz-Agudo, B., González-Calero, P.: jColibri 1.0 in a nutshell. A software tool for designing CBR systems. In: 10th UKCBR Workshop Proceedings, pp. 1–11 (2005)

    Google Scholar 

  45. Recio-Garcia, J.A., Díaz-Agudo, B., Jorro-Aragoneses, J.L., Kazemi, A.: Intelligent control system for back pain therapy. In: Aha, D.W., Lieber, J. (eds.) ICCBR 2017. LNCS (LNAI), vol. 10339, pp. 287–301. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61030-6_20

    Chapter  Google Scholar 

  46. Recio-García, J.A., González-Calero, P.A., Díaz-Agudo, B.: jColibri2: a framework for building case-based reasoning systems. SCP 79, 126–145 (2014)

    Google Scholar 

  47. Reuss, P., Stram, R., Althoff, K.-D., Henkel, W., Henning, F.: Knowledge engineering for decision support on diagnosis and maintenance in the aircraft domain. In: Nalepa, G.J., Baumeister, J. (eds.) Synergies Between Knowledge Engineering and Software Engineering. AISC, vol. 626, pp. 173–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64161-4_9

    Chapter  Google Scholar 

  48. Richter, M.M.: Knowledge containers. In: Readings in CBR. MKP (2003)

    Google Scholar 

  49. Sabri, Q.U., Bayer, J., Ayzenshtadt, V., Bukhari, S.S., Althoff, K.D., Dengel, A.: Semantic pattern-based retrieval of architectural floor plans with case-based and graph-based searching techniques and their evaluation and visualization. In: ICPRAM, pp. 50–60 (2017)

    Google Scholar 

  50. Schoenborn, J.M., Weber, R.O., Aha, D.W., Cassens, J., Althoff, K.D.: Explainable case-based reasoning: a survey. In: AAAI-2021 Workshop Proceedings (2021)

    Google Scholar 

  51. Schoenborn, J.M., Reuss, P., Wenzel, C., Althoff, K.: Towards a case-based decision support system for recruiting processes using T-shapes. In: Modellierung-C 2020. CEUR Workshop Proceedings, vol. 2542, pp. 165–171. CEUR-WS.org (2020)

    Google Scholar 

  52. Schultheis, A., Hoffmann, M., Malburg, L., Bergmann, R.: Explanation of similarities in process-oriented case-based reasoning by visualization. In: Massie, S., Chakraborti, S. (eds.) ICCBR 2023. LNAI, vol. 14141, pp. 53–68. Springer, Cham (2023)

    Google Scholar 

  53. Schulz, S.: CBR-works - a state-of-the-art shell for case-based application building. In: 7th GWCBR Proceedings, vol. 99, pp. 3–12. Citeseer (1999)

    Google Scholar 

  54. Schumacher, J.: Empolis Orenge - an open platform for knowledge management applications. In: 1st German Workshop on Experience Mgmt, pp. 61–62. GI (2002)

    Google Scholar 

  55. Stahl, A., Roth-Berghofer, T.R.: Rapid prototyping of CBR applications with the open source tool myCBR. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 615–629. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85502-6_42

    Chapter  Google Scholar 

  56. Stram, R., Reuss, P., Althoff, K.-D.: Dynamic case bases and the asymmetrical weighted one-mode projection. In: Cox, M.T., Funk, P., Begum, S. (eds.) ICCBR 2018. LNCS (LNAI), vol. 11156, pp. 385–398. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01081-2_26

    Chapter  Google Scholar 

  57. Thakur, N., Chhabra, T., Verma, D., Kumar, D., Dayal, M.: Case based reasoning: a comparative analysis of CBR tools. IJIRCST 4, 11190–11196 (2016)

    Google Scholar 

  58. Unsworth, R., et al.: Safety and efficacy of an adaptive bolus calculator for type 1 diabetes: a randomized controlled crossover study. Dia. Technol. Ther 25(6), 414–425 (2023)

    Article  MathSciNet  Google Scholar 

  59. Watson, I.D.: Applying Case-Based Reasoning - Techniques for the Enterprise Systems. MKP (1997)

    Google Scholar 

  60. Watson, I.D., Marir, F.: Case-based reasoning: a review. Knowl. Eng. Rev. 9(4), 327–354 (1994)

    Article  Google Scholar 

  61. Wenzel, C., Reuss, P., Rose, K., Althoff, K.D.: Multi-agent, case-based configuration of custom-built racing cars. In: 19th UKCBR Workshop Proceedings (2014)

    Google Scholar 

  62. Wijekoon, A., Wiratunga, N., Palihawadana, C., Nkisi-Orji, I., Corsar, D., Martin, K.: iSee: intelligent sharing of explanation experience by users for users. In: 28th IUI Companion Proceedings, pp. 79–82 (2023)

    Google Scholar 

  63. Zeyen, C., Malburg, L., Bergmann, R.: Adaptation of scientific workflows by means of process-oriented case-based reasoning. In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 388–403. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29249-2_26

    Chapter  Google Scholar 

  64. Zeyen, C., Müller, G., Bergmann, R.: Conversational process-oriented case-based reasoning. In: Aha, D.W., Lieber, J. (eds.) ICCBR 2017. LNCS (LNAI), vol. 10339, pp. 403–419. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61030-6_28

    Chapter  Google Scholar 

Download references

Acknowledgments

We would like to thank the following people for contributing to the compilation of the CBR framework fact sheets: Ikechukwu Nkisi-Orji and Chamath Palihawadana (CloodCBR), Beatriz López, Oscar Raya, and Jonah Fernández (eXiT*CBR), Juan Antonio Recio García (jColibri), and Pascal Reuss (myCBR). This work is funded by the Federal Ministry for Economic Affairs and Climate Action under grant No. 01MD22002C EASY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Schultheis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schultheis, A., Zeyen, C., Bergmann, R. (2023). An Overview and Comparison of Case-Based Reasoning Frameworks. In: Massie, S., Chakraborti, S. (eds) Case-Based Reasoning Research and Development. ICCBR 2023. Lecture Notes in Computer Science(), vol 14141. Springer, Cham. https://doi.org/10.1007/978-3-031-40177-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40177-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40176-3

  • Online ISBN: 978-3-031-40177-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics