Skip to main content

Explanation of Similarities in Process-Oriented Case-Based Reasoning by Visualization

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2023)

Abstract

Modeling similarity measures in Case-Based Reasoning is a knowledge-intensive, demanding, and error-prone task even for domain experts. Visualizations offer support for users, but are currently only available for certain subdomains and case representations. Currently, there are only visualizations that can be used for local attributes or specific case representations. However, there is no possibility to visualize similarities between complete processes accordingly so far, although complex domains may be present. Therefore, an extension of existing approaches or the design of new suitable concepts for this application domain is necessary. The contribution of this work is to enable a more profound understanding of similarity for knowledge engineers who create a similarity model and support them in this task by using visualization methods in Process-Oriented Case-Based Reasoning (POCBR). For this purpose, we present related approaches and evaluate them against derived requirements for visualizations in POCBR. On this basis, suitable visualizations are further developed as well as new approaches designed. Three such visualizations are created: (1) a graph mapping approach, (2) a merge graph, and (3) a visualization based on heatmaps. An evaluation of these approaches has been performed based on the requirements in which the domain experts determine the graph-mapping visualization as best-suited for engineering of similarity models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A detailed description of all visualization approaches, including various mock-ups, is available at https://git.opendfki.de/easy/explanation-of-similarities-in-pocbr-by-visualization/-/blob/main/Detailed_Description_of_Visualization_Approaches.pdf.

  2. 2.

    The implementation is available at https://git.opendfki.de/easy/explanation-of-similarities-in-pocbr-by-visualization.

References

  1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7(1), 39–59 (1994)

    Article  Google Scholar 

  2. Andrews, K., Wohlfahrt, M., Wurzinger, G.: Visual graph comparison. In: 13th IV, pp. 62–67. IEEE (2009)

    Google Scholar 

  3. Bach, K., Mork, P.J.: On the explanation of similarity for developing and deploying CBR systems. In: 33rd FLAIRS, pp. 413–416. AAAI Press (2020)

    Google Scholar 

  4. Batyrshin, I.Z., Kubysheva, N., Solovyev, V., Villa-Vargas, L.A.: Visualization of similarity measures for binary data and 2x2 tables. CyS 20(3), 345–353 (2016)

    Article  Google Scholar 

  5. Bergmann, R.: Experience Management: Foundations, Development Methodology, and Internet-Based Applications, LNCS, vol. 2432. Springer, Cham (2003). https://doi.org/10.1007/3-540-45759-3_4

    Book  Google Scholar 

  6. Bergmann, R., et al.: The ReCAP Project. Datenbank-Spektrum 20(2), 93–98 (2020)

    Google Scholar 

  7. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic workflows. Inf. Syst. 40, 115–127 (2014)

    Article  Google Scholar 

  8. Bergmann, R., Grumbach, L., Malburg, L., Zeyen, C.: ProCAKE: a process-oriented case-based reasoning framework. In: Proceedings of the 27th ICCBR Workshop (2019)

    Google Scholar 

  9. Bunke, H., Messmer, B.T.: Similarity measures for structured representations. In: Wess, S., Althoff, K.-D., Richter, M.M. (eds.) EWCBR 1993. LNCS, vol. 837, pp. 106–118. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58330-0_80

    Chapter  Google Scholar 

  10. Burkhard, H., Richter, M.M.: On the Notion of Similarity in Case Based Reasoning and Fuzzy Theory. In: Pal, S.K., Dillon, T.S., Yeung, D.S. (eds.) Soft Computing in CBR, pp. 29–45. Springer, London (2001). https://doi.org/10.1007/978-1-4471-0687-6_2

    Chapter  Google Scholar 

  11. Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualization: Using Vision to Think. Academic Press, Cambridge (1999)

    Google Scholar 

  12. Das, A., Rad, P.: Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey. CRR 2006.11371 (2020)

    Google Scholar 

  13. Eades, P., Xuemin, L.: How to draw a directed graph. In: IEEE Workshop on Visual Languages, pp. 13–14. IEEE Computer Society (1989)

    Google Scholar 

  14. Epskamp, S., Cramer, A.O., Waldorp, L.J., Schmittmann, V.D., Borsboom, D.: qgraph: network visualizations of relationships in psychometric data. J. Stat. Softw. 48, 1–18 (2012)

    Article  Google Scholar 

  15. Gates, L., Kisby, C., Leake, D.: CBR confidence as a basis for confidence in black box systems. In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 95–109. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29249-2_7

    Chapter  Google Scholar 

  16. Hall, M., et al.: A Systematic Method to Understand Requirements for Explainable AI (XAI) Systems. In: Proceedings of the 28th IJCAI Workshop, vol. 11 (2019)

    Google Scholar 

  17. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  18. Hoffmann, M., Bergmann, R.: Informed Machine Learning for Improved Similarity Assessment in Process-Oriented Case-Based Reasoning. CoRR abs/2106.15931 (2021)

    Google Scholar 

  19. Ivanov, S., Kalenkova, A.A., van der Aalst, W.M.P.: BPMNDiffViz: a tool for BPMN Models Comparison. In: Procedings of the 13th BPM, CEUR Workshop, vol. 1418, pp. 35–39. CEUR-WS.org (2015)

    Google Scholar 

  20. Kendall-Morwick, J., Leake, D.: A study of two-phase retrieval for process-oriented case-based reasoning. In: Montani, S., Jain, L. (eds.) Successful Case-based Reasoning Applications-2. Studies in Computational Intelligence, pp. 7–27. Springer, Berlin (2014). https://doi.org/10.1007/978-3-642-38736-4_2

    Chapter  Google Scholar 

  21. Kenny, E.M., Keane, M.T.: Twin-systems to explain artificial neural networks using case-based reasoning: comparative tests of feature-weighting methods in ANN-CBR twins for XAI. In: 28th IJCAI, pp. 2708–2715 (2019)

    Google Scholar 

  22. Kumar, R., Schultheis, A., Malburg, L., Hoffmann, M., Bergmann, R.: Considering inter-case dependencies during similarity-based retrieval in process-oriented case-based reasoning. In: 35th FLAIRS. FloridaOJ (2022)

    Google Scholar 

  23. Lamy, J.B., Sekar, B., Guezennec, G., Bouaud, J., Séroussi, B.: Explainable artificial intelligence for breast cancer: a visual case-based reasoning approach. Artif. Intell. Med. 94, 42–53 (2019)

    Article  Google Scholar 

  24. Lenz, M., et al.: Towards an argument mining pipeline transforming texts to argument graphs. In: 8th COMMA. FAIA, vol. 326, pp. 263–270. IOS Press (2020)

    Google Scholar 

  25. Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. (1932)

    Google Scholar 

  26. Manovich, L.: What is visualization. paj: J. Initiative Digital Hum. Media Cult. 2(1) (2010)

    Google Scholar 

  27. Marín-Veites, P., Bach, K.: Explaining CBR systems through retrieval and similarity measure visualizations: a case study. In: Keane, M.T., Wiratunga, N. (eds.) ICCBR 2022. Lecture Notes in Computer Science, vol. 13405, pp. 111–124. Springer, Cham (2022)

    Chapter  Google Scholar 

  28. Massie, S., Craw, S., Wiratunga, N.: Visualisation of case-base reasoning for explanation. In: Proceedings of the 7th ECCBR, pp. 135–144 (2004)

    Google Scholar 

  29. Mathisen, B.M., Aamodt, A., Bach, K., Langseth, H.: Learning similarity measures from data. Prog. Artif. Intell. 9(2), 129–143 (2020)

    Article  Google Scholar 

  30. McArdle, G., Wilson, D.C.: Visualising Case-Base Usage. In: Proceedings of the 5th ICCBR Workshop, pp. 105–114 (2003)

    Google Scholar 

  31. Minor, M., Montani, S., Recio-García, J.A.: Process-oriented case-based reasoning. Inf. Syst. 40, 103–105 (2014)

    Article  Google Scholar 

  32. Namee, B.M., Delany, S.J.: CBTV: visualising case bases for similarity measure design and selection. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS (LNAI), vol. 6176, pp. 213–227. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14274-1_17

    Chapter  Google Scholar 

  33. Nugent, C., Cunningham, P.: A case-based explanation system for black-box systems. Artif. Intell. Rev. 24(2), 163–178 (2005)

    Article  MATH  Google Scholar 

  34. Ontañón, S.: An overview of distance and similarity functions for structured data. Artif. Intell. Rev. 53(7), 5309–5351 (2020)

    Article  Google Scholar 

  35. Rabiee, F.: Focus-group interview and data analysis. PNS 63(4), 655–660 (2004)

    Article  Google Scholar 

  36. Recio-García, J.A., Parejas-Llanovarced, H., Orozco-del-Castillo, M.G., Brito-Borges, E.E.: A case-based approach for the selection of explanation algorithms in image classification. In: Sánchez-Ruiz, A.A., Floyd, M.W. (eds.) ICCBR 2021. LNCS (LNAI), vol. 12877, pp. 186–200. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86957-1_13

    Chapter  Google Scholar 

  37. Richter, M.M.: Knowledge containers. In: Readings in CBR. MKP (2003)

    Google Scholar 

  38. Rostami, M.A., Saeedi, A., Peukert, E., Rahm, E.: Interactive visualization of large similarity graphs and entity resolution clusters. In: 21th EDBT, pp. 690–693. OpenProceedings.org (2018)

    Google Scholar 

  39. Schoenborn, J.M., Weber, R.O., Aha, D.W., Cassens, J., Althoff, K.D.: Explainable case-based reasoning: a survey. In: AAAI-21 Workshop Proceedings (2021)

    Google Scholar 

  40. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of IEEE Symposium on Visual Languages, pp. 336–343. IEEE Computer Society (1996)

    Google Scholar 

  41. Sørmo, F., Cassens, J., Aamodt, A.: Explanation in case-based reasoning-perspectives and goals. Artif. Intell. Rev. 24(2), 109–143 (2005)

    Article  MATH  Google Scholar 

  42. Wilkinson, L., Friendly, M.: The history of the cluster heat map. Am. Stat. 63(2), 179–184 (2009)

    Article  MathSciNet  Google Scholar 

  43. Xuu, A.B.: Structure mapping in the comparison process. AJP 113(4), 501–538 (2000)

    Google Scholar 

  44. Zeyen, C., Bergmann, R.: A*-based similarity assessment of semantic graphs. In: Watson, I., Weber, R. (eds.) ICCBR 2020. LNCS (LNAI), vol. 12311, pp. 17–32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58342-2_2

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is funded by the Federal Ministry for Economic Affairs and Climate Action under grant No. 01MD22002C EASY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Schultheis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schultheis, A., Hoffmann, M., Malburg, L., Bergmann, R. (2023). Explanation of Similarities in Process-Oriented Case-Based Reasoning by Visualization. In: Massie, S., Chakraborti, S. (eds) Case-Based Reasoning Research and Development. ICCBR 2023. Lecture Notes in Computer Science(), vol 14141. Springer, Cham. https://doi.org/10.1007/978-3-031-40177-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40177-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40176-3

  • Online ISBN: 978-3-031-40177-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics