Abstract
While small and medium-sized enterprises (SMEs) make up 99% of registered companies in Germany, only a fraction of them is engaged in Internet of Things (IoT) and Artificial Intelligence (AI) as part of their Industry 4.0 initiatives. Despite the potential of IoT and AI, the prerequisites to use these technologies may not be met by SMEs, or the benefits expected may not be aligned with their needs. This research paper identifies typical characteristics of SMEs in the manufacturing sector through a literature review. In addition, we conducted a brainwriting workshop and discussed the findings among interdisciplinary researchers. Our qualitative research approach revealed 19 distinct barriers classified into three key dimensions. Our findings can assist technology managers and production departments in evaluating their organizations and addressing the identified adoption barriers. Additionally, the results can be used in further research to set up practice-oriented guidelines that support the holistic adoption of IoT and AI in manufacturing SMEs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Zeba, G., et al.: Technology mining: Artificial intelligence in manufacturing. Technological Forecasting and Social Change, vol. 171 (2021). https://doi.org/10.1016/j.techfore.2021.120971
Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M.: Industry 4.0. Bus. Inf. Syst. Eng. 6(4), 239–242 (2014). https://doi.org/10.1007/s12599-014-0334-4
Elia, G., Margherita, A.: A conceptual framework for the cognitive enterprise: pillars, maturity, value drivers. Technology Analysis & Strategic Management, vol. 34 (2022). https://doi.org/10.1080/09537325.2021.1901874
Hollowell, C., Kollar, B., Vrbka, J., Kovalova, E.: Cognitive Decision-Making Algorithms for Sustainable Manufacturing Processes in Industry 4.0: Networked, Smart, and Responsive Devices. Econ. Manage., Financial Markets, 14(4), 9–15 (2019). https://doi.org/10.22381/EMFM14420191
Ghosh, A., Chakraborty, D., Law, A.: Artificial Intelligence in Internet of Things. CAAI Trans. Intell. Technol., 3(4), (2018). https://doi.org/10.1049/trit.2018.1008
European Commission: 2022 SME Country Fact Sheet Germany (2022). https://ec.europa.eu/docsroom/documents/50688
Bauer, W., et al.: Künstliche Intelligenz in der Unternehmenspraxis. Studie zu Auswirkungen auf Dienstleistung und Produktion. Fraunhofer Verlag, Stuttgart (2019)
Bischoff, J., et al.: Erschließen der Potenziale der Anwendung von Industrie 4.0 im Mittelstand. agiplan, Mülheim an der Ruhr (2015)
Türkeș, M., et al.: Drivers and Barriers in Using Industry 4.0: A Perspective of SMEs in Romania. Processes, 7(3), 153 (2019). https://doi.org/10.3390/pr7030153
1Ulrich, P., Frank, V.: Relevance and Adoption of AI technologies in German SMEs – Results from Survey-Based Research. Procedia Computer Science, vol. 192, 2152–2159 (2021). https://doi.org/10.1016/j.procs.2021.08.228
Kuldeep, B., Anuj, K., Arya, K., Purvi, P.: A Study of Barriers and benefits of Artificial Intelligence Adoption. In: Small and Medium Enterprise. Academy of Marketing Studies Journal, vol. 26 (2022)
Ghobakhloo, M., et al.: Drivers and barriers of Industry 4.0 technology adoption among manufacturing SMEs: a systematic review and transformation roadmap. JMTM, vol. 33(4) (2022). https://doi.org/10.1108/JMTM-12-2021-0505
Mayring, P.: Qualitative Content Analysis: Demarcation, Varieties, Developments. Qualitative Content Analysis, vol. 20 (2019). https://doi.org/10.17169/FQS-20.3.3343
Wilson, C.: Brainstorming and Beyond. A User-Centered Design Method. Elsevier Science, Amsterdam (2013)
Guenzi, P., Storbacka, K.: The organizational implications of implementing key account management: A case-based examination. Indust. Market. Manage. 45, 84–97 (2015). https://doi.org/10.1016/j.indmarman.2015.02.020
Ihlau, S., Duscha, H.: Besonderheiten bei der Bewertung von KMU. Planungsplausibilisierung, Steuern, Kapitalisierung. Springer, Wiesbaden (2019). https://doi.org/10.1007/978-3-658-18675-3
Wiesner, S., Gaiardelli, P., Gritti, N., Oberti, G.: Maturity Models for Digitalization in Manufacturing - Applicability for SMEs. In: Moon, I., Lee, G.M., Park, J., Kiritsis, D., von Cieminski, G. (eds.) APMS 2018. IAICT, vol. 536, pp. 81–88. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99707-0_11
Peschke, F., Eckardt, C.: Flexible Produktion durch Digitalisierung. Entwicklung von UseCases. Carl Hanser Verlag, München (2019)
Ludwig, T., et al.: HMD Praxis der Wirtschaftsinformatik 53(1), 71–86 (2015). https://doi.org/10.1365/s40702-015-0200-y
Steinmüller, K.: Methoden der Zukunftsforschung – Langfristorientierung als Ausgangspunkt für das Technologie-Roadmapping. In: Möhrle, M.G., Isenmann, R. (eds.) Technologie-Roadmapping. V, pp. 29–46. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-52709-2_3
Sames, G., Diener, A.: Stand der Digitalisierung von Geschäftsprozessen zu Industrie 4.0 im Mittelstand. Technische Hochschule Mittelhessen, Gießen (2018)
Mittal, S., Khan, M.A., Romero, D., Wuest, T.: A critical review of smart manufacturing & Industry 4.0 maturity models: Implications for small and medium-sized enterprises (SMEs). J. Manufact. Syst. 49, 194–214 (2018). https://doi.org/10.1016/j.jmsy.2018.10.005
Dickmann, P.: Schlanker Materialfluss mit Lean. Kanban und Innovationen. Springer, Berlin (2015)
Schebek L.: Ressourceneffizienz durch Industrie 4.0. VDI Zentrum Ressourceneffizienz, Berlin (2017)
Teichmann, M., Ullrich, A., Wenz, J., Gronau, N.: HMD Praxis der Wirtschaftsinformatik 57(3), 512–527 (2020). https://doi.org/10.1365/s40702-020-00614-x
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Auer, T., Rösl, S., Schieder, C. (2023). Exploring Potential Barriers for the Adoption of Cognitive Technologies in Industrial Manufacturing SMEs – Preliminary Results of a Qualitative Study. In: Elstermann, M., Dittmar, A., Lederer, M. (eds) Subject-Oriented Business Process Management. Models for Designing Digital Transformations. S-BPM ONE 2023. Communications in Computer and Information Science, vol 1867. Springer, Cham. https://doi.org/10.1007/978-3-031-40213-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-40213-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40212-8
Online ISBN: 978-3-031-40213-5
eBook Packages: Computer ScienceComputer Science (R0)