Skip to main content

Dealing with Over-Reliance on Background Graph for Few-Shot Knowledge Graph Completion

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14117))

  • 521 Accesses

Abstract

Few-shot knowledge graph completion (FKGC) has drawn growing research attention recently, aiming at inferring new triples using only a small number of related references. Most existing FKGC methods encode few-shot relations by capturing signals from local neighbors of each entity. However, this process dramatically relies on a thorough background knowledge graph (background KG) that is space-consuming to storage and often inaccessible in real-life cases. Moreover, they tend to overlook the underlying correlational information coming with different relations. In this paper, we attempt to address FKGC task in a practical scenario where background KG is not provided and propose a novel framework called ICOM (I Can Count On Myself) which aims at making full use of few-shot instances within and across relations. Specifically, we go deep into the interaction between entity pairs within specific relation and devise a 3D convolutional meta-relation learner to extract relation-specific features straightly from triple. To accumulate knowledge across relations, an analogical enhancer is then built to leverage the semantic relational correlations attentively so that correlative relations can complement each other on representation learning for better link prediction. Finally, we introduce meta-learning technique for faster adaption. Empirical studies on three real-world FKGC datasets demonstrate that ICOM shows superiority over competitive baseline methods and achieves new state-of-the-art results with different few-shot sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS (2013)

    Google Scholar 

  2. Chen, M., Zhang, W., Zhang, W., Chen, Q., Chen, H.: Meta relational learning for few-shot link prediction in knowledge graphs. arXiv abs/1909.01515 (2019)

    Google Scholar 

  3. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  4. Feng, W.H., Zha, D., Wang, L., Guo, X.: Convolutional 3D embedding for knowledge graph completion. In: 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 1197–1202 (2022)

    Google Scholar 

  5. Gabrilovich, E., Markovitch, S.: Wikipedia-based semantic interpretation for natural language processing. J. Artif. Intell. Res. 34, 443–498 (2014)

    Article  MATH  Google Scholar 

  6. Jiang, Z., Gao, J., Lv, X.: Metap: meta pattern learning for one-shot knowledge graph completion. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (2021)

    Google Scholar 

  7. Li, Y., Yu, K., Zhang, Y., Wu, X.: Learning relation-specific representations for few-shot knowledge graph completion. arXiv abs/2203.11639 (2022)

    Google Scholar 

  8. Liang, Y., Zhao, S., Cheng, B., Yin, Y., Yang, H.: Tackling solitary entities for few-shot knowledge graph completion. In: Knowledge Science, Engineering and Management (2022)

    Google Scholar 

  9. van der Maaten, L., Hinton, G.E.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  10. Niu, G., et al.: Relational learning with gated and attentive neighbor aggregator for few-shot knowledge graph completion. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (2021)

    Google Scholar 

  11. Sheng, J., et al.: Adaptive attentional network for few-shot knowledge graph completion. In: Conference on Empirical Methods in Natural Language Processing (2020)

    Google Scholar 

  12. Sun, Z., Deng, Z., Nie, J.Y., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. arXiv abs/1902.10197 (2018)

    Google Scholar 

  13. Tian, A., Zhang, C., Rang, M., Yang, X., Zhan, Z.: RA-GCN: relational aggregation graph convolutional network for knowledge graph completion. In: Proceedings of the 2020 12th International Conference on Machine Learning and Computing (2020)

    Google Scholar 

  14. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning (2016)

    Google Scholar 

  15. Wang, Y., Zhang, H.: Introducing graph neural networks for few-shot relation prediction in knowledge graph completion task. In: Knowledge Science, Engineering and Management (2021)

    Google Scholar 

  16. Xiong, W., Yu, M., Chang, S., Guo, X., Wang, W.Y.: One-shot relational learning for knowledge graphs. In: Conference on Empirical Methods in Natural Language Processing (2018)

    Google Scholar 

  17. Yang, B., tau Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. CoRR abs/1412.6575 (2014)

    Google Scholar 

  18. Yuan, X., Xu, C., Li, P., Chen, Z.: Relational learning with hierarchical attention encoder and recoding validator for few-shot knowledge graph completion. In: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing (2022)

    Google Scholar 

  19. Zhang, C., Yao, H., Huang, C., Jiang, M., Li, Z.J., Chawla, N.: Few-shot knowledge graph completion. In: AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  20. Zhang, N., et al.: Long-tail relation extraction via knowledge graph embeddings and graph convolution networks. In: North American Chapter of the Association for Computational Linguistics (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, R., Wei, X. (2023). Dealing with Over-Reliance on Background Graph for Few-Shot Knowledge Graph Completion. In: Jin, Z., Jiang, Y., Buchmann, R.A., Bi, Y., Ghiran, AM., Ma, W. (eds) Knowledge Science, Engineering and Management. KSEM 2023. Lecture Notes in Computer Science(), vol 14117. Springer, Cham. https://doi.org/10.1007/978-3-031-40283-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40283-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40282-1

  • Online ISBN: 978-3-031-40283-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics