Skip to main content

Community-Enhanced Contrastive Siamese Networks for Graph Representation Learning

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14117))

  • 518 Accesses

Abstract

Graph representation learning is the encoding of graph nodes into a low-dimensional representation space, which can effectively improve graph information representation while reducing the information dimensionality. To overcome the heavy reliance on label information of previous graph representation learning, the graph contrastive learning method has received attention from researchers as a self-supervised learning method, but it introduces the problem of sample selection dependence. To address this issue, inspired by deep clustering methods and image contrastive learning methods, we propose a novel Siamese network method, namely Community-enhanced Contrastive Siamese networks for Graph Representation Learning (MEDC). Specifically, we employ a Siamese network architecture to contrast two augmented views of the original graph and guide the network training by minimizing the similarity of positive sample nodes and negative sample nodes. Meanwhile, to take full advantage of the potential community structure of graph, we add a deep clustering layer in the network architecture, and the perceived community structure information is used to guide the selection of positive and negative samples. To demonstrate the effectiveness of the proposed method, we conducted a series of comparative experiments on three real datasets to validate the performance of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: a survey. IEEE Transactions on Big Data, pp. 3–28 (2018). https://doi.org/10.1109/tbdata.2018.2850013

  2. Ktena, S.I., et al.: Distance metric learning using graph convolutional networks: application to functional brain networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 469–477. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_54

    Chapter  Google Scholar 

  3. Lin, H., Ma, J., Cheng, M., Yang, Z., Chen, L., Chen, G.: Rumor detection on twitter with claim-guided hierarchical graph attention networks. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 10035–10047 (2021)

    Google Scholar 

  4. Bastings, J., Titov, I., Aziz, W., Marcheggiani, D., Sima’an, K.: Graph convolutional encoders for syntax-aware neural machine translation. The Association for Computational Linguistics (2017)

    Google Scholar 

  5. Ma, J., Zhou, C., Cui, P., Yang, H., Zhu, W.: Learning disentangled representations for a recommendation. In: Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  6. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning with rich text information. In: Proceedings of the 24th International Joint Conference on Artifcial lntelligence, pp. 2111–2117 (2015)

    Google Scholar 

  7. Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  8. Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local structure preservation. In: IJCAI, pp. 1753–1759 (2017)

    Google Scholar 

  9. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning, pp. 478–487. PMLR (2016)

    Google Scholar 

  10. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. Adv. Neural. Inf. Process. Syst. 33, 5812–5823 (2020)

    Google Scholar 

  11. Hassani, K., Khasahmadi, A.H.: Contrastive multi-view representation learning on graphs. In: International Conference on Machine Learning, pp. 4116–4126. PMLR (2020)

    Google Scholar 

  12. Jin, M., Zheng, Y., Li, Y.F., Gong, C., Zhou, C., Pan, S. Multi-scale contrastive Siamese networks for self-supervised graph representation learning. arXiv preprint arXiv:2105.05682 (2021)

  13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  14. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1735–1742 (2006)

    Google Scholar 

  15. Mueller, J., Thyagarajan, A., Doshi-Velez, F.: Siamese recurrent architectures for learning sentence similarity. In: Thirty-First AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  16. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  17. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: Advances in Neural Information Processing Systems 33, pp. 21271-21284 (2020)

    Google Scholar 

  18. Zhao, H., Yang, X., Wang, Z., Yang, E., Deng, C.: Graph debiased contrastive learning with joint representation clustering. In: IJCAI, pp. 3434–3440 (2021)

    Google Scholar 

  19. Peng, Z., Liu, H., Jia, Y., Hou, J.: Attention-driven graph clustering network. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 935–943 (2021)

    Google Scholar 

  20. Peng, Z., et al.: Graph representation learning via graphical mutual information maximization. In: Proceedings of The Web Conference 2020, pp. 259–270 (2020)

    Google Scholar 

  21. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive representation learning. In: ICML Workshop on Graph Representation Learning and Beyond (2020)

    Google Scholar 

  22. Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural network evaluation. Computing Research Repository, abs/1811.05868 (2018)

    Google Scholar 

  23. Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 195–200 (2005)

    Google Scholar 

  24. Younis, O., Krunz, M., Ramasubramanian, S.: Node clustering in wireless sensor networks: recent developments and deployment challenges. IEEE Network 20(3), 20–25 (2006)

    Article  Google Scholar 

  25. Rendón, E., Abundez, I., Arizmendi, A., Quiroz, E.M.: Internal versus external cluster validation indexes. Int. J. Comput. Commun. 5(1), 27-34 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baokai Zu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Wang, W., Ma, G., Zu, B. (2023). Community-Enhanced Contrastive Siamese Networks for Graph Representation Learning. In: Jin, Z., Jiang, Y., Buchmann, R.A., Bi, Y., Ghiran, AM., Ma, W. (eds) Knowledge Science, Engineering and Management. KSEM 2023. Lecture Notes in Computer Science(), vol 14117. Springer, Cham. https://doi.org/10.1007/978-3-031-40283-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40283-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40282-1

  • Online ISBN: 978-3-031-40283-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics