Skip to main content

Graph Neural Network with Neighborhood Reconnection

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14117))

  • 538 Accesses

Abstract

Graph Neural Network (GNN) models have become increasingly popular for network analysis, especially in node classification tasks. However, the effectiveness of GNNs is compromised by two limitations. First, they implicitly assume that networks are homophilous, leading to decreased performance on heterophilous or random networks commonly found in the real world. Second, they tend to ignore the known node labels, inferring node labels merely from the node features and network structure. This is mainly rooted in the non-uniformity of node degrees, which makes it hard to directly aggregate label information. Hence, we propose a novel framework NRGNN, short for Graph Neural Network with Neighborhood Reconnection. NRGNN adjusts the network structure to increase homophily and uniformize node degrees. Then it applies message-passing-based or PageRank-based GNNs to the reconstructed networks, addressing the two limitations of GNNs. We evaluate NRGNN against 14 state-of-the-art baselines for node classification tasks. The empirical results demonstrate that NRGNN outperforms almost all the baselines, regardless of whether the datasets are homophilous, heterophilous, or random. The techniques might be adapted to more network analysis tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-El-Haija, S., et al.: MixHop: higher-order graph convolutional architectures via sparsified neighborhood mixing. In: Proceedings of the 36th International Conference on Machine Learning, pp. 21–29 (2019)

    Google Scholar 

  2. Al Shalabi, L., Shaaban, Z.: Normalization as a preprocessing engine for data mining and the approach of preference matrix. In: 2006 International Conference on Dependability of Computer Systems, pp. 207–214 (2006)

    Google Scholar 

  3. Chien, E., Peng, J., Li, P., Milenkovic, O.: Adaptive Universal Generalized PageRank Graph Neural Network (2021)

    Google Scholar 

  4. Gasteiger, J., Bojchevski, A., Günnemann, S.: Predict then Propagate: Graph Neural Networks meet Personalized PageRank (2022)

    Google Scholar 

  5. Hamilton, W., Ying, Z., Leskovec, J.: Inductive Representation Learning on Large Graphs. In: Advances in Neural Information Processing Systems. vol. 30 (2017)

    Google Scholar 

  6. Kipf, T.N., Welling, M.: Semi-Supervised Classification with Graph Convolutional Networks (2017)

    Google Scholar 

  7. Lim, D., Li, X., Hohne, F., Lim, S.N.: New Benchmarks for Learning on Non-Homophilous Graphs (2021)

    Google Scholar 

  8. Ma, Y., Liu, X., Shah, N., Tang, J.: Is homophily a necessity for graph neural networks? In: International Conference on Learning Representations (2022)

    Google Scholar 

  9. Maurya, S.K., Liu, X., Murata, T.: Improving Graph Neural Networks with Simple Architecture Design (2021)

    Google Scholar 

  10. Namata, G., London, B., Getoor, L., Huang, B.: Query-driven active surveying for collective classification. In: 10th International Workshop on Mining and Learning with Graphs. vol. 8, p. 1 (2012)

    Google Scholar 

  11. Pei, H., Wei, B., Chang, K.C.C., Lei, Y., Yang, B.: Geom-GCN: geometric graph convolutional networks. In: International Conference on Learning Representations (2019)

    Google Scholar 

  12. Qu, M., Bengio, Y., Tang, J.: GMNN: graph markov neural networks. In: Proceedings of the 36th International Conference on Machine Learning, pp. 5241–5250 (2019)

    Google Scholar 

  13. Rozemberczki, B., Allen, C., Sarkar, R.: Multi-scale attributed node embedding. J. Complex Netw. 9(2), cnab014 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008)

    Google Scholar 

  15. Şimşek, Ö., Jensen, D.: Navigating networks by using homophily and degree. Proc. Natl. Acad. Sci. 105(35), 12758–12762 (2008)

    Article  Google Scholar 

  16. Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 807–816. Paris France (2009)

    Google Scholar 

  17. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations. arXiv:1710.10903 (2018)

  18. Wang, H., Leskovec, J.: Unifying Graph Convolutional Neural Networks and Label Propagation (2020)

    Google Scholar 

  19. Wang, Y., Jin, J., Zhang, W., Yu, Y., Zhang, Z., Wipf, D.: Bag of Tricks for Node Classification with Graph Neural Networks (2021)

    Google Scholar 

  20. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.I., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. In: Proceedings of the 35th International Conference on Machine Learning, pp. 5453–5462 (2018)

    Google Scholar 

  21. Yan, Y., Hashemi, M., Swersky, K., Yang, Y., Koutra, D.: Two sides of the same coin: heterophily and oversmoothing in graph convolutional neural networks. In: 2022 IEEE International Conference on Data Mining (ICDM), pp. 1287–1292 (2022)

    Google Scholar 

  22. Yoshua, B., Olivier, D., Nicolas Le, R.: Label propagation and quadratic criterion. In: Chapelle, O., Scholkopf, B., Zien, A. (eds.) Semi-Supervised Learning, pp. 192–216. The MIT Press (2006)

    Google Scholar 

  23. Zhang, S., Liu, Y., Sun, Y., Shah, N.: Graph-less neural networks: teaching old MLPs new tricks via distillation. In: International Conference on Learning Representations (2022)

    Google Scholar 

  24. Zhang, X., Zitnik, M.: GNNGuard: defending graph neural networks against adversarial attacks. In: Advances in Neural Information Processing Systems, vol. 33, pp. 9263–9275 (2020)

    Google Scholar 

  25. Zhu, J., et al.: Graph neural networks with heterophily. Proc. AAAI Conf. Art. Intell. 35(12), 11168–11176 (2021)

    Google Scholar 

  26. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily in graph neural networks: current limitations and effective designs. In: Advances in Neural Information Processing Systems. vol. 33, pp. 7793–7804 (2020)

    Google Scholar 

Download references

Acknowledgement

Thanks to Sa Wang and Yungang Bao for their help. This work is supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences under grant numbers XDA0320000 and XDA0320300, the National Natural Science Foundation of China (Grant No. 62072433 and 62090022), the Fundamental Research Funds for the Central Universities (DUT21RC(3)102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingwu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, M., Sun, Z., Wang, Y., Liu, X. (2023). Graph Neural Network with Neighborhood Reconnection. In: Jin, Z., Jiang, Y., Buchmann, R.A., Bi, Y., Ghiran, AM., Ma, W. (eds) Knowledge Science, Engineering and Management. KSEM 2023. Lecture Notes in Computer Science(), vol 14117. Springer, Cham. https://doi.org/10.1007/978-3-031-40283-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40283-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40282-1

  • Online ISBN: 978-3-031-40283-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics