Skip to main content

Critical Node Privacy Protection Based on Random Pruning of Critical Trees

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2023)

Abstract

With the popularity of social networks, the conflict between the heterogeneous social network data publishing and user privacy leakage is becoming very obvious. Especially for critical node users, if the critical node users suffer from background knowledge attacks during data publishing, it can not only lead to the privacy information leakage of the critical user but also lead to the privacy leakage of their friends. To address this issue, we propose a critical node privacy protection method based on random pruning of critical trees. First, we obtain the critical node candidate set by the degree centrality. Then, we calculate the candidate node’s global and local criticality to get the critical node set. Next, we extract the critical tree with the critical node as the root node. Finally, we design a critical tree privacy protection strategy based on random pruning. The experimental results show that the proposed method can balance the privacy and availability of critical nodes in the network data publishing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weihua, G., Song, S., Xiaobing, P., Xuhua, Y.: Clustering and associating method of dual heterogeneous communities in location based social networks. Chin. J. Comput. 43(10), 1910–1922 (2020)

    Google Scholar 

  2. Huang, H., Zhang, D., Wang, K., Gu, J., Wang, R.: Privacy-preserving approach PBCN in social network with differential privacy. IEEE Trans. Netw. Serv. Manage. 17, 931–945 (2020)

    Article  Google Scholar 

  3. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information. In: Proceedings of the 17th ACMSIGMODSIGACT - SIGART Symposium on the Principles of Database Systems, Seattle, WA, USA, vol. 188, pp. 10–1145 (1998)

    Google Scholar 

  4. Zhang, J., Xu, L., Tsai, P.-W.: Community structure-based trilateral stackelberg game model for privacy protection. Appl. Math. Model. 86, 20–35 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jiang, H., Jiguo, Yu., Cheng, X., Zhang, C., Gong, B., Haotian, Yu.: Structure-attribute-based social network deanonymization with spectral graph partitioning. IEEE Trans. Comput. Soc. Syst. 9(3), 902–913 (2022)

    Article  Google Scholar 

  6. Zhang, X., Li, J., Liu, J., Zhang, H., Liu, L.: Social network sensitive area perturbance method based on firefly algorithm. IEEE Access 7, 137759–137769 (2019)

    Article  Google Scholar 

  7. Wei, J., Lin, Y., Yao, X., Zhang, J.: Differential privacy-based location protection in spatial crowdsourcing. IEEE Trans. Serv. Comput. 15(1), 45–58 (2022)

    Article  Google Scholar 

  8. Xiao, X., Xiong, L., Yuan, C.: Differential privacy via wavelet transforms. IEEE Trans. Knowl. Data Eng. 23(8), 1200–1214 (2011)

    Article  Google Scholar 

  9. Lei, H., Li, S., Wang, H.: A weighted social network publishing method based on diffusion wavelets transform and differential privacy. Multimedia Tools Appl. 81, 20311–20328 (2022)

    Article  Google Scholar 

  10. Gao, T., Li, F.: Differential private social network publication and persistent homology preservation. IEEE Trans. Netw. Sci. Eng. 8(4), 3152–3166 (2021)

    Article  MathSciNet  Google Scholar 

  11. Han, Y., Sun, B., Wang, J., Du, Y.: Object person analysis based on critical node recognition algorithm. J. Beijing Univ. Aeronaut. Astronaut. 48, (2022)

    Google Scholar 

  12. Wu, Z., Hu, J., Tian, Y., Shi, W., Yan, J.: Privacy preserving algorithms of uncertain graphs in social networks. J. Softw. 30(4), 1106–1120 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This paper is supported by the National Natural Science Foundation of China under Grant no.61672179.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qu, L., Wang, Y., Yang, J. (2023). Critical Node Privacy Protection Based on Random Pruning of Critical Trees. In: Jin, Z., Jiang, Y., Buchmann, R.A., Bi, Y., Ghiran, AM., Ma, W. (eds) Knowledge Science, Engineering and Management. KSEM 2023. Lecture Notes in Computer Science(), vol 14117. Springer, Cham. https://doi.org/10.1007/978-3-031-40283-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40283-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40282-1

  • Online ISBN: 978-3-031-40283-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics