Abstract
The anomaly detection of univariate time series data is becoming increasingly important, as early detection of anomalies is valuable in practical applications. However, due to the continuous influx of data streams and the dynamic changes in data patterns, real-time anomaly detection still poses challenges. Algorithms such as SPOT, DSPOT, and FluxEV are efficient unsupervised anomaly detection algorithms for data streams, but their detection performance still needs to be improved when processing large-scale data streams. To address this, we propose the Real-Time Anomaly Detection Algorithm for Univariate Time Series Data Based on Two-Parameter Estimation (RTAD-TP), a fast and effective unsupervised real-time anomaly detection algorithm. We calculate the residual between the current value and the predicted value using Exponential Moving Average (EMA), and apply extreme value distribution to determine the threshold for the residual. In addition, we use two-parameter estimation to improve the speed and accuracy of parameter estimation in automatic thresholding, addressing the limitations of SPOT, DSPOT, and FluxEV. Experimental results show that the RTAD-TP algorithm has better detection performance than the baseline algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmad, S., Lavin, A., Purdy, S., Agha, Z.: Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262, 134–147 (2017)
Blázquez-García, A., Conde, A., Mori, U., Lozano, J.A.: A review on outlier/anomaly detection in time series data. ACM Comput. Surv. (CSUR) 54(3), 1–33 (2021)
Braei, M., Wagner, S.: Anomaly detection in univariate time-series: a survey on the state-of-the-art. arXiv preprint arXiv:2004.00433 (2020)
Chakraborty, N., et al.: Structural attention-based recurrent variational autoencoder for highway vehicle anomaly detection. arXiv preprint arXiv:2301.03634 (2023)
Chatterjee, A., Ahmed, B.S.: IoT anomaly detection methods and applications: a survey. Internet Things 19, 100568 (2022)
Himeur, Y., Ghanem, K., Alsalemi, A., Bensaali, F., Amira, A.: Artificial intelligence based anomaly detection of energy consumption in buildings: a review, current trends and new perspectives. Appl. Energy 287, 116601 (2021)
Hosking, J.R., Wallis, J.R.: Parameter and quantile estimation for the generalized pareto distribution. Technometrics 29(3), 339–349 (1987)
Li, J., Di, S., Shen, Y., Chen, L.: FluxEV: a fast and effective unsupervised framework for time-series anomaly detection. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pp. 824–832 (2021)
Ren, H., et al.: Time-series anomaly detection service at Microsoft. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3009–3017 (2019)
Seymour, L.: Introduction to time series and forecasting. J. Am. Stat. Assoc. 92(440), 1647 (1997)
Siffer, A., Fouque, P.A., Termier, A., Largouet, C.: Anomaly detection in streams with extreme value theory. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1067–1075 (2017)
Xu, H., et al.: Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications. In: Proceedings of the 2018 World Wide Web Conference, pp. 187–196 (2018)
de Zea Bermudez, P., Kotz, S.: Parameter estimation of the generalized pareto distribution–part I. J. Statist. Plann. Inference 140(6), 1353–1373 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fan, Q., Tang, Y., Ding, X., Huangfu, Q., Ding, P. (2023). RTAD-TP: Real-Time Anomaly Detection Algorithm for Univariate Time Series Data Based on Two-Parameter Estimation. In: Jin, Z., Jiang, Y., Buchmann, R.A., Bi, Y., Ghiran, AM., Ma, W. (eds) Knowledge Science, Engineering and Management. KSEM 2023. Lecture Notes in Computer Science(), vol 14117. Springer, Cham. https://doi.org/10.1007/978-3-031-40283-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-40283-8_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40282-1
Online ISBN: 978-3-031-40283-8
eBook Packages: Computer ScienceComputer Science (R0)