Skip to main content

Heavy Weighting for Potential Important Clauses

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14119))

  • 381 Accesses

Abstract

The Partial Maximum Satisfiability Problem (PMS) is an optimization variant of the satisfiability problem. It involves separating constraints into hard and soft categories, making it useful for modeling complex problems such as scheduling, vehicle routing, and circuit design automation. Because PMS serves both verification and optimization functions, studying fast and efficient solving methods for it has significant theoretical and practical value. The Stochastic Local Search (SLS) algorithm is widely recognized as an effective method for solving PMS, providing high-quality solutions within reasonable timeframe. While recent research has focused on overcoming the challenge of getting stuck in local optima, this paper proposes a novel approach to improve the initial solution construction process in order to solve more PMS instances. Specifically, we adjust the initial weights of clauses based on contradictory information generated in building an initial solution. Experimental results on the MaxSAT Evaluation (MSE) benchmarks demonstrate that our resulting method, SATLC, outperforms the state-of-the-art PMS SLS, SATLike3.0, in terms of both solution quantity and quality. (The source code can be found at https://github.com/whyte-yhy/SATLC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The detailed description is available at https://maxsat-evaluations.github.io.

References

  1. Ansótegui, C., Bonet, M.L., Giráldez-Cru, J., Levy, J., Simon, L.: Community structure in industrial SAT instances. J. Artif. Intell. Res. 66, 443–472 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ansótegui, C., Giráldez-Cru, J., Levy, J., Simon, L.: Using community structure to detect relevant learnt clauses. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 238–254. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_18

    Chapter  Google Scholar 

  3. Cai, S., Lei, Z.: Old techniques in new ways: clause weighting, unit propagation and hybridization for maximum satisfiability. Artif. Intell. 287, 103354 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, S., Luo, C., Thornton, J., Su, K.: Tailoring local search for partial maxsat. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec City, Canada. pp. 2623–2629 (2014)

    Google Scholar 

  5. Cai, S., Luo, C., Zhang, H.: From decimation to local search and back: a new approach to maxsat. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, pp. 571–577 (2017)

    Google Scholar 

  6. Cai, S., Su, K.: Local search for boolean satisfiability with configuration checking and subscore. Artif. Intell. 204, 75–98 (2013)

    Article  MATH  Google Scholar 

  7. Coster, A.D., Musliu, N., Schaerf, A., Schoisswohl, J., Smith-Miles, K.: Algorithm selection and instance space analysis for curriculum-based course timetabling. J. Sched. 25(1), 35–58 (2022)

    Article  MathSciNet  Google Scholar 

  8. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37

    Chapter  Google Scholar 

  9. Kilby, P., Slaney, J.K., Thiébaux, S., Walsh, T.: Backbones and backdoors in satisfiability. In: Proceedings, The 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, Pittsburgh, USA, pp. 1368–1373 (2005)

    Google Scholar 

  10. Lei, Z., Cai, S.: Solving (weighted) partial maxsat by dynamic local search for SAT. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, pp. 1346–1352 (2018)

    Google Scholar 

  11. Li, C.M., Manyà, F.: Maxsat, hard and soft constraints. In: Handbook of Satisfiability - Second Edition, Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 903–927. IOS Press (2021)

    Google Scholar 

  12. Li, C., Xu, Z., Coll, J., Manyà, F., Habet, D., He, K.: Combining clause learning and branch and bound for maxsat. In: Proceedings of the 27th International Conference on Principles and Practice of Constraint Programming, Montpellier, France (Virtual Conference), LIPIcs, vol. 210, pp. 38:1–38:18 (2021)

    Google Scholar 

  13. Liang, J.H., Ganesh, V., Zulkoski, E., Zaman, A., Czarnecki, K.: Understanding VSIDS branching heuristics in conflict-driven clause-learning SAT solvers. In: Piterman, N. (ed.) HVC 2015. LNCS, vol. 9434, pp. 225–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26287-1_14

    Chapter  Google Scholar 

  14. Lorenz, J.-H., Wörz, F.: On the effect of learned clauses on stochastic local search. In: Pulina, L., Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 89–106. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51825-7_7

    Chapter  MATH  Google Scholar 

  15. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided maxsat resolution. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec City, Canada, pp. 2717–2723. AAAI Press (2014)

    Google Scholar 

  16. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proceedings of the 12th National Conference on Artificial Intelligence, Seattle, USA, vol. 1, pp. 337–343 (1994)

    Google Scholar 

  17. Selman, B., Levesque, H.J., Mitchell, D.G.: A new method for solving hard satisfiability problems. In: Proceedings of the 10th National Conference on Artificial Intelligence, San Jose, USA, pp. 440–446 (1992)

    Google Scholar 

  18. Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2_30

    Chapter  Google Scholar 

  19. Silva, J.P.M., Sakallah, K.A.: Boolean satisfiability in electronic design automation. In: Proceedings of the 37th Conference on Design Automation, Los Angeles, USA, pp. 675–680. ACM (2000)

    Google Scholar 

  20. Wu, Q., Hao, J., Glover, F.W.: Multi-neighborhood tabu search for the maximum weight clique problem. Ann. Oper. Res. 196(1), 611–634 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, Z., Zhou, J., Wang, X., Yang, H., Fan, Y.: Initial solution generation and diversified variable picking in local search for (weighted) partial maxsat. Entropy 24(12), 1846 (2022)

    Article  MathSciNet  Google Scholar 

  22. Zheng, J., Zhou, J., He, K.: Farsighted probabilistic sampling based local search for (weighted) partial maxsat. CoRR abs/2108.09988 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, H., Jiang, M., Chen, Y. (2023). Heavy Weighting for Potential Important Clauses. In: Jin, Z., Jiang, Y., Buchmann, R.A., Bi, Y., Ghiran, AM., Ma, W. (eds) Knowledge Science, Engineering and Management. KSEM 2023. Lecture Notes in Computer Science(), vol 14119. Springer, Cham. https://doi.org/10.1007/978-3-031-40289-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40289-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40288-3

  • Online ISBN: 978-3-031-40289-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics