Skip to main content

ParaSum: Contrastive Paraphrasing for Low-Resource Extractive Text Summarization

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14119))

  • 427 Accesses

Abstract

Existing extractive summarization methods achieve state-of-the-art (SOTA) performance with pre-trained language models (PLMs) and sufficient training data. However, PLM-based methods are known to be data-hungry and often fail to deliver satisfactory results in low-resource scenarios. Constructing a high-quality summarization dataset with human-authored reference summaries is a prohibitively expensive task. To address these challenges, this paper proposes a novel paradigm for low-resource extractive summarization, called ParaSum. This paradigm reformulates text summarization as textual paraphrasing, aligning the text summarization task with the self-supervised Next Sentence Prediction (NSP) task of PLMs. This approach minimizes the training gap between the summarization model and PLMs, enabling a more effective probing of the knowledge encoded within PLMs and enhancing the summarization performance. Furthermore, to relax the requirement for large amounts of training data, we introduce a simple yet efficient model and align the training paradigm of summarization to textual paraphrasing to facilitate network-based transfer learning. Extensive experiments over two widely used benchmarks (i.e., CNN/DailyMail, Xsum) and a recent open-sourced high-quality Chinese benchmark (i.e., CNewSum) show that ParaSum consistently outperforms existing PLM-based summarization methods in all low-resource settings, demonstrating its effectiveness over different types of datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Existing mainstream summarization datasets typically contain at least 100,000 news articles with corresponding human-authored reference summaries [11,12,13].

References

  1. Xu, J., Gan, Z., Cheng, Y., Liu, J.: Discourse-aware neural extractive text summarization. In: ACL (2020)

    Google Scholar 

  2. Quatra, M., Cagliero, L.: End-to-end training for financial report summarization. In: COLING, pp. 118–123 (2020)

    Google Scholar 

  3. Liu, Y., Lapata, M.: Text summarization with pretrained encoders. In: EMNLP-IJCNLP, pp. 3730–3740 (2019)

    Google Scholar 

  4. Chen, Y.-C., Bansal, M.: Fast abstractive summarization with reinforce-selected sentence rewriting. In: ACL (2018)

    Google Scholar 

  5. Gu, N., Ash, E., Hahnloser, R.: MemSum: extractive summarization of long documents using multi-step episodic Markov decision processes. In: ACL, Ireland, Dublin, pp. 6507–6522 (2022)

    Google Scholar 

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL, pp. 4171–4186 (2019)

    Google Scholar 

  7. Liu, Y., Ott, M., Goyal, N., et al.: Roberta: a robustly optimized BERT pretraining approach, arXiv, vol. abs/1907.11692 (2019)

    Google Scholar 

  8. Zhong, M., Liu, P., Chen, Y., Wang, D., Qiu, X., Huang, X.: Extractive summarization as text matching. In: ACL, pp. 6197–6208 (2020)

    Google Scholar 

  9. Zhong, M., Liu, P., Wang, D., Qiu, X., Huang, X.: Searching for effective neural extractive summarization: what works and what’s next. In: ACL, pp. 1049–1058 (2019)

    Google Scholar 

  10. Schick, T., Schütze, H.: It’s not just size that matters: small language models are also few-shot learners. In: NAACL, pp. 2339–2352 (2021)

    Google Scholar 

  11. Hermann, K.M., et al.: Teaching machines to read and comprehend. In: NeuralIPS, pp. 1693–1701 (2015)

    Google Scholar 

  12. Narayan, S., Cohen, S.B., Lapata, M.: Don’t give me the details, just the summary! Topic-aware convolutional neural networks for extreme summarization. In: EMNLP (2018)

    Google Scholar 

  13. Chen, K., Fu, G., Chen, Q., Hu, B.: A large-scale Chinese long-text extractive summarization corpus. In: ICASSP, pp. 7828–7832 (2021)

    Google Scholar 

  14. Shafiq, N., et al.: Abstractive text summarization of low-resourced languages using deep learning. PeerJ Comput. Sci. 9, e1176 (2023)

    Article  Google Scholar 

  15. Chen, Y.-S., Song, Y.-Z., Shuai, H.-H.: SPEC: summary preference decomposition for low-resource abstractive summarization. IEEE/ACM Trans. Audio Speech Lang. Process. 31, 603–618 (2022)

    Article  Google Scholar 

  16. Huh, T., Ko, Y.: Lightweight meta-learning for low-resource abstractive summarization. In: SIGIR, pp. 2629–2633 (2022)

    Google Scholar 

  17. Zaken, E.B., Ravfogel, S., Goldberg, Y.: BitFit: simple parameter-efficient fine-tuning for transformer-based masked language-models. In: ACL, pp. 1–9 (2022)

    Google Scholar 

  18. Song, H., Dong, L., Zhang, W., Liu, T., Wei, F.: CLIP models are few-shot learners: empirical studies on VQA and visual entailment. In: ACL, pp. 6088–6100 (2022)

    Google Scholar 

  19. Wang, S., Fang, H., Khabsa, M., Mao, H., Ma, H.: Entailment as few-shot learner, CoRR (2021)

    Google Scholar 

  20. Gao, P., et al.: CLIP-Adapter: Better Vision-Language Models with Feature Adapters, arXiv (2021)

    Google Scholar 

  21. Zhang, R., et al.: Tip-adapter: training-free adaption of CLIP for few-shot classification. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13695, pp. 493–510. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19833-5_29

    Chapter  Google Scholar 

  22. Houlsby, N., et al.: Parameter-efficient transfer learning for NLP. In: ICML, pp. 2790–2799 (2019)

    Google Scholar 

  23. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17, 2096-2030 (2016)

    Google Scholar 

  24. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: NeurIPS (2014)

    Google Scholar 

  25. Gao, T., Fisch, A., Chen, D.: Making pre-trained language models better few-shot learners. In: ACL, pp. 3816–3830 (2021)

    Google Scholar 

  26. Lin, C.-Y.: ROUGE: a package for automatic evaluation of summaries. In: Text Summarization Branches Out, pp. 74–81 (2004)

    Google Scholar 

  27. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763 (2021)

    Google Scholar 

  28. Liu, Y., Liu, P.: SimCLS: a simple framework for contrastive learning of abstractive summarization. In: ACL, pp. 1065–1072 (2021)

    Google Scholar 

  29. Liu, Y., Liu, P., Radev, D., Neubig, G.: BRIO: bringing order to abstractive summarization. In: ACL, pp. 2890–2903 (2022)

    Google Scholar 

  30. Wang, D., Chen, J., Wu, X., Zhou, H., Li, L.: CNewSum: a large-scale summarization dataset with human-annotated adequacy and deducibility level. In: Wang, L., Feng, Y., Hong, Yu., He, R. (eds.) NLPCC 2021. LNCS (LNAI), vol. 13028, pp. 389–400. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88480-2_31

    Chapter  Google Scholar 

  31. Sharma, L., Graesser, L., Nangia, N., Evci, U.: Natural language understanding with the quora question pairs dataset, arXiv (2019)

    Google Scholar 

  32. Liu, X., et al.: LCQMC: a large-scale Chinese question matching corpus. In: COLING, pp. 1952–1962 (2018)

    Google Scholar 

  33. Hu, B., Chen, Q., Zhu, F.: LCSTS: a large scale Chinese short text summarization dataset. In: EMNLP, pp. 1967–1972 (2015)

    Google Scholar 

  34. Li, S., Zhao, Z., Hu, R., Li, W., Liu, T., Du, X.: Analogical reasoning on Chinese morphological and semantic relations. In: ACL, pp. 138–143 (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 62202170 and Alibaba Group through the Alibaba Innovation Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cen Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, M., Wang, C., Wang, J., Chen, C., Gao, M., Qian, W. (2023). ParaSum: Contrastive Paraphrasing for Low-Resource Extractive Text Summarization. In: Jin, Z., Jiang, Y., Buchmann, R.A., Bi, Y., Ghiran, AM., Ma, W. (eds) Knowledge Science, Engineering and Management. KSEM 2023. Lecture Notes in Computer Science(), vol 14119. Springer, Cham. https://doi.org/10.1007/978-3-031-40289-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40289-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40288-3

  • Online ISBN: 978-3-031-40289-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics