Skip to main content

Prototype-Augmented Contrastive Learning for Few-Shot Unsupervised Domain Adaptation

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14120))

  • 691 Accesses

Abstract

Unsupervised domain adaptation aims to learn a classification model from the source domain with much-supervised information, which is applied to the utterly unsupervised target domain. However, collecting enough labeled source samples is difficult in some scenarios, decreasing the effectiveness of previous approaches substantially. Therefore, a more challenging and applicable problem called few-shot unsupervised domain adaptation is considered in this work, where a classifier trained with only a few source labels needs to show strong generalization on the target domain. The prototype-based self-supervised learning method has presented superior performance improvements in addressing this problem, while the quality of the prototype could be further improved. To mitigate this situation, a novel Prototype-Augmented Contrastive Learning is proposed. A new computation strategy is utilized to rectify the source prototypes, which are then used to improve the target prototypes. To better learn semantic information and align features, both in-domain prototype contrastive learning and cross-domain prototype contrastive learning are performed. Extensive experiments are conducted on three widely used benchmarks: Office, OfficeHome, and DomainNet, achieving accuracy improvement of over 3%, 1%, and 0.5%, respectively, demonstrating the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607 (2020)

    Google Scholar 

  2. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  3. Cicek, S., Soatto, S.: Unsupervised domain adaptation via regularized conditional alignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1416–1425 (2019)

    Google Scholar 

  4. Damodaran, B.B., Kellenberger, B., Flamary, R., Tuia, D., Courty, N.: DeepJDOT: deep joint distribution optimal transport for unsupervised domain adaptation. In: Proceedings of the European Conference on Computer Vision, pp. 447–463 (2018)

    Google Scholar 

  5. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 1–35 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

  7. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  8. Jiang, X., Lao, Q., Matwin, S., Havaei, M.: Implicit class-conditioned domain alignment for unsupervised domain adaptation. In: International Conference on Machine Learning, pp. 4816–4827 (2020)

    Google Scholar 

  9. Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4893–4902 (2019)

    Google Scholar 

  10. Kim, D., Saito, K., Oh, T.H., Plummer, B.A., Sclaroff, S., Saenko, K.: Cross-domain self-supervised learning for domain adaptation with few source labels. arXiv preprint arXiv:2003.08264 (2020)

  11. Le-Khac, P.H., Healy, G., Smeaton, A.F.: Contrastive representation learning: a framework and review. IEEE Access 8, 193907–193934 (2020)

    Article  Google Scholar 

  12. Li, J., Zhou, P., Xiong, C., Hoi, S.C.: Prototypical contrastive learning of unsupervised representations. arXiv preprint arXiv:2005.04966 (2020)

  13. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105 (2015)

    Google Scholar 

  14. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. arXiv e-prints, pp. arXiv-1705 (2017)

    Google Scholar 

  15. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. arXiv e-prints, pp. arXiv-1602 (2016)

    Google Scholar 

  16. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: International Conference on Machine Learning, pp. 2208–2217 (2017)

    Google Scholar 

  17. Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  18. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1406–1415 (2019)

    Google Scholar 

  19. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  20. Saito, K., Kim, D., Sclaroff, S., Darrell, T., Saenko, K.: Semi-supervised domain adaptation via minimax entropy. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8050–8058 (2019)

    Google Scholar 

  21. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3723–3732 (2018)

    Google Scholar 

  22. Tanwisuth, K., et al.: A prototype-oriented framework for unsupervised domain adaptation. Adv. Neural Inf. Process. Syst. 34, 17194–17208 (2021)

    Google Scholar 

  23. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)

    Google Scholar 

  24. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

  25. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5018–5027 (2017)

    Google Scholar 

  26. Wang, J., Chen, Y., Hao, S., Feng, W., Shen, Z.: Balanced distribution adaptation for transfer learning. In: 2017 IEEE International Conference on Data Mining, pp. 1129–1134 (2017)

    Google Scholar 

  27. Wang, Q., Breckon, T.: Unsupervised domain adaptation via structured prediction based selective pseudo-labeling. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34, pp. 6243–6250 (2020)

    Google Scholar 

  28. Wang, R., Wu, Z., Weng, Z., Chen, J., Qi, G.J., Jiang, Y.G.: Cross-domain contrastive learning for unsupervised domain adaptation. arXiv preprint arXiv:2106.05528 (2021)

  29. Wilson, G., Cook, D.J.: A survey of unsupervised deep domain adaptation. ACM Trans. Intell. Syst. Technol. 11(5), 1–46 (2020)

    Article  Google Scholar 

  30. Xu, R., Liu, P., Wang, L., Chen, C., Wang, J.: Reliable weighted optimal transport for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4394–4403 (2020)

    Google Scholar 

  31. Yue, X., et al.: Prototypical cross-domain self-supervised learning for few-shot unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13834–13844 (2021)

    Google Scholar 

  32. Zhang, W., Ouyang, W., Li, W., Xu, D.: Collaborative and adversarial network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3801–3809 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zili Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gong, L., Zhang, W., Li, M., Zhang, J., Zhang, Z. (2023). Prototype-Augmented Contrastive Learning for Few-Shot Unsupervised Domain Adaptation. In: Jin, Z., Jiang, Y., Buchmann, R.A., Bi, Y., Ghiran, AM., Ma, W. (eds) Knowledge Science, Engineering and Management. KSEM 2023. Lecture Notes in Computer Science(), vol 14120. Springer, Cham. https://doi.org/10.1007/978-3-031-40292-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40292-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40291-3

  • Online ISBN: 978-3-031-40292-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics